

Basic Beowulf HPC Installation and
Configuration Guide with SLURM

Developed by

The H3ABionet Pipelines and Computing Work Package,
Computing Infrastructure project team

Prepared for the greater

H3ABioNet and H3Africa Consortium communities

Purpose
The purpose of this document is to guide the reader through the installation and configuration of a
basic Beowolf HPC cluster using SLURM as the resource manager.

Document Control
Date Authorization Version Description

Assumptions
This guide makes the below assumptions:

• Familiarity with installing an Ubuntu OS
• The reader is comfortable working at the command line
• There is adequate power and cooling available for the cluster
• A disaster recovery plan has been implemented or at least is being considered.
• Consideration has been given to data and server security
• Server resources such as disk RAID’s, etc have already been setup
• Should the reader be following this guide using virtual machines, the assumption is made

that these virtual machines have already been setup and are operational.

How to read this guide
• General text describing each section and commands are written in the Arial font, size 11.

This text is to be read to understand which skills will be gained in the following section and
to describe the command operation.

• When noting a variation to a default command or to note a point or warning, the default
text will be highlighted in yellow.

• When noting a tip, for example, a command that can be run in multiple ways producing the
same output, this text will be highlighted in green.

• When giving examples of actual expected output, this text will be highlighted with a grey
background.

• When listing a command that is to be run by the reader to produce an output, the
command will be in light blue italics.

<Insert-table-of-contents>

Abbreviations
OS Operating System

NFS Network File Server

HPC High-Performance Cluster

1. Introduction
Access to big data has drastically increased over the last decade – this is especially true in the
Bioinformatics arena. Hardware vendors have made great progress in packing more compute

resources into single server – however, even with this advancement in modern technology, single
servers still do not have the necessary resource capacity to analyse these large datasets. Too meet
this computational need, many organizations turn to High-Performance Computing (HPC). Usually,
HPC systems are out of reach for most. To bridge this gap, the Open-Source community has
developed various ways of developing small scale HPC systems using every day hardware that is
financially viable for smaller organizations to implement. Using open-source tools, one could
develop an HPC system across a bunch of desktop machines or smaller, off-the-shelf servers.

The purpose of this guide is to walk the reader through setting up a Beowulf HPC cluster using the
SLURM resource manager to manage system resources and job submission. This guide is based on
the collective experiences in implementing HPC systems in the H3ABioNet consortium.

Below is a high-level diagram of a Beowulf HPC cluster.

Source: original

2. Server hardware
The cluster can be created using physical or virtual servers. If you are new to Linux,
specifically Ubuntu and are not sure how to install the OS, please follow the >> insert
hyperlink to getting started guide “LINUX - Getting Started”. The resources such as RAM,
local disk storage, network speeds and number of cores required for the servers are
dependent on the expected computational workload of the cluster.

It is advisable for the worker nodes to have the same hardware and processor types.
Example, all Intel or AMD’s, etc. While this is advisable, it is not strictly necessary.

3. OS Installation and configuration
This guide does not cover the specifics of an Ubuntu OS installation. If you are not familiar with
installing the Ubuntu OS, follow the <insert-hyper-link> “Linux: Getting Started” guide for detailed
instructions.

Depending on the expected computation work load, some cluster setups have separate
servers for user logins and another for the SLURM controller node. The login node is the
entry point for user logins. The controller node is where the SLURM daemon that controls
and monitors job submissions and cluster resources run. The login and controller functions
can reside on the same server if need be.

One of the cluster prerequisites is that all servers in the cluster are able to connect to each other via
the network and that there is some form of shared storage available to all server – especially the
worker nodes. For this guide, we will setup a basic NFS server to share a few directories across the
cluster. Lastly, all worker nodes need to be able to access the internet for OS updates and software
installations. The worker nodes themselves do not need to connect directly to the internet, you can
configure these servers to proxy through the controller node to access the internet.

With the OS installed, lets first start configuring all servers to talk to each other via the network.

3.1. Networking
One of the first tasks, post OS installation is to configure the local server networking. For this setup,
I am using two IP address ranges. The one IP address range is referred to as the “public” IP. this IP
has access to the internet and is part of the main organizational IP range. The worker nodes do not
have direct access to the internet and are connected to the controller / login node via a second,
private switch. Theses' IPs are referred to as the “private” IP address range.

Depending on the reader's needs, the cluster can be setup across a single switch and IP range but
best practices suggested that the worker nodes communication over a private network / switch to
limit traffic on the production network / switch.

Let us first configure the controller / login node.

3.1.1. SLURM controller machine setup
In Ubuntu 20.04, the networking is managed via netplan and all networking configurations are
contained in a .yaml file. A fresh installation of Ubuntu 20.04 will either create a “50-cloud-init.yaml”
or “00-installer-config.yaml” file. Whichever file is created, edit the file and place the below content
into it.

sudo vim /etc/netplan/00-installer-config.yaml

network:
 ethernets:
 eth0: # Public IP range
 addresses: []
 dhcp4: true # IP is assigned via a DHCP
 optional: true # Allows the vm to boot if there are IP related issues
 eth1: # private IP range
 addresses: [10.1.1.222/24]
 dhcp4: false # IP is statically assigned
 optional: true # Allows the vm to boot if there are IP related issues
 version: 2

eth0 is setup for DHCP and connects to the public network with the eth1 network setup as a static IP
and connects to private network. All SLURM worker nodes will communicate over the private
network.

The .yaml files are quite finicky and will complain if one character is out by a space. To test that the
configuration file has been edited correctly, use the ‘”try” command.

 sudo netplan try

If no errors are encounted, run the below command to activate the changes you just made to
the .yaml file

 sudo netplan apply

Now run the “ifconfig” command to confirm that the second network card shows up

If you see IPs assigned, then your controller machine is correctly setup and you are ready to move
on.

 eth0 > <IP-from-public-IP-range>
 eth1 > <IP-from-private-IP-range>

Next, we will map the private IP ranges to the worker node server’s user-friendly host names.

NOTE:

• The below step needs to be completed on all servers in the cluster so that they can
communicate via the IP address or user-friendly host name.

 sudo vim /etc/hosts

Add the below to the hosts file and edit with any additional IPs as required.

 ## SLURM cluster private IP range

 # Controller
 <private-ip-of-controller> <hostname-of-controller>

 # workernodes

<private-ip-of-controller> <hostname-of-controller>
<private-ip-of-controller> <hostname-of-controller>
<private-ip-of-controller> <hostname-of-controller>

NOTE:
• For the worker nodes host names, I usually use the below format to identify them:

 <slurm-wrk-110>

slurm = this server is a member of the SLURM cluster
Wrk = identifies the server as a worker node
110 = is a number given to identify the specific server. This can be any number of
 your choosing

NOTE:

• The cluster worker nodes do not have public IP addresses, as such, they cannot access the
internet directly. To allow them to access the internet for software updates and installation,
we need to enable NAT and port forwarding on the controller. On the worker node we just
need to have the “gateway” line that points to the controller’s private IP.

On the controller, first backup the /etc/sysctl.conf file then find the line “net.ipv4.ip_forward=1”

 sudo cp /etc/sysctl.conf /etc/sysctl.conf.original
 sudo vim /etc/sysctl.conf

Find the line “net.ipv4.ip_forward=1”. Uncomment it, save the file and restart the headnode.

On system reboot, run the below command to ensure that port forward for IPv4 has been enabled

 sudo sysctl net.ipv4.ip_forward

Next, enable NAT in iptables and instruct it to route incoming traffic to the internet via the eth0 NIC /
public NIC

 sudo iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

NOTE:

• eth0 here is the public network card (NIC). The above command enables NAT and allows
traffic coming in on the private IP range from the worker nodes which is then passed to eth0
and sent out to the internet

now ssh into the worker node and ping www.google.com or update the repositories. You should
now be able to access the internet via the controller node.

3.1.2. SLURM worker node machine setup
This section assumes that the OS has already been installed and you just need to configure the IP for
networking.

The cluster worker nodes communicate on the local private network. First, we need to assign a
static IP address in the private IP range.

Ubuntu 20.04 no longer uses the /etc/networking/interface file to record IP configuration. It uses
the new “netplan” which uses “.yaml” style configuration files. When doing a fresh installation of
Ubuntu 20.04, the default network .yaml file that is created often differs in the naming. Most of the
time however, it is named “50-cloud-init.yaml”. Edit this file to configure IP addresses.

sudo vim /etc/netplan/50-cloud-init.yaml # edit the default network configuration file

set the static IP on your NIC that goes to the local CBIO network

 network:
 ethernets:
 eth0:
 addresses: []
 dhcp4: true
 optional: true # when set to true, a server will still boot if there is a problem with the
NIC. This is an optional setting.
 eth1:
 dhcp4: false
 addresses: [<priate-ip>/24] # type in the unique IP of the worker node.

NOTE:

• Don’t forget the “/24” subnet bit or you will get errors when applying the changes

 gateway4: <private-ip-of-controller>

 version: 2

save and exit the file, then apply the changes.

sudo netplan apply # converts the .yaml file into a configuration file readable by the backend
network application and applies the changes.

Next add your organization's domain for name resolution

sudo vim /etc/resolve.conf

Add the below line to the bottom of the configuration file

 search <your-organizations-domain-name>

http://www.google.com/

Save and close the file.

Now map the IPs to the user-friendly host names.

SLURM cluster private IP range

Controller
<private-ip-of-controller> <hostname-of-controller>

workernodes
<private-ip-of-controller> <hostname-of-controller>
<private-ip-of-controller> <hostname-of-controller>
<private-ip-of-controller> <hostname-of-controller>

As a quick test, try to ping some of the other servers in the cluster via IP address and hostname. If
you do not encounter any errors, you can move on to the next step.

It is important that all servers in the cluster have the same date and time setting. Let's look at the
date and time setup on all server to ensure that they are all synchronized.

3.2. Date and time synchronization
For the cluster to work optimally, you need to have the date and time on all the servers in the cluster
synchronized.

to see what time zone the server is configured to use, use the “timedatectl” command or type “cat
/etc/timezone”

 timedatectl

You should see output similar to the below. Look for the “Time Zone” line to see what time zone the
server is configured to use. We are specifically interested in the “bold” text

 Local time: Tue 2021-04-20 14:57:58 UTC
 Universal time: Tue 2021-04-20 14:57:58 UTC
 RTC time: Tue 2021-04-20 14:57:58
 Time zone: Etc/UTC (UTC, +0000)
 System clock synchronized: yes
 NTP service: active
 RTC in local TZ: no

Alternate command to view the time zone used

 cat /etc/timezone

output

 Etc/UTC

If the time zone listed in the above outputs is not the time zone for your area, we would need to
update the system to use the correct time zone. First, list all the time zones to see if your time zone
is listed.

 timedatectl list-timezones

The above command will spit out a long list of time zones, to narrow down the options, use the
“grep” command to filter by your country. Example, if you are located in Africa,

timedatectl list-timezones | grep Africa

Once you have found your time zone, copy the text and past it into the “set-timezone” command as
per below. To change the time zone to the “Africa/Johannesburg” time zone, run the below
command

 sudo timedatectl set-timezone Africa/Johannesburg

Now use the timedatectl or “timezone” commands to confirm the changes.

You should now see your countries time zone reflected and the date and time should reflect your
current date and time. We have one more item to check before we can move on. Ensure that the
synchronized setting is set to “yes”. if not, edit using the “set-ntp” command.

If the setting is set to no, enable it with the below command

 sudo timedatectl set-ntp

NOTE:

• The above needs to be repeated on all servers in the cluster

With the date, time and time zone configured. We can proceed to the next step – setting up
password-less login.

3.3. SSH keys for password-less login
Next, we need to setup ssh keys for password-less login to connect to the worker-nodes from the
control machine. If you have not yet created a SSH keypair, run the below command. If, however,
you already have generated a SSH keypair, then simply copy the .pub file over to the worker node.

The “ssh-keygen” command generates two keys. The “id_rsa” is your private key and should never
be shared with anyone. This key is used to validate the public key. The second key, “id_rsa.pub” is
the public key you copy to the machines that you want to log into without a password.

Generate a ssh keypair if you do not already have one.

ssh-keygen # This will create a SSH keypair using the default RSA encryption.

NOTE:

• To use a different encryption, add the “-t” option and assign the type of encryption to be
used “ssh-keygen -t ed25519”.

We don’t set any passphrases so you can accept all defaults by depressing the enter key when
prompted.

Once your ssh keypair has been created, copy the .pub key to the machine you want to access
without typing in a password. We use the “ssh-copy-id” command to copy the public key to anther
server.

NOTE:

• if you only have one ssh keypair, the .pub key will automatically be selected and copied into
the “.ssh/known_hosts” or “.ssh/authorized_keys” files on the remote machine.

ssh-copy-id <user>@<workernode-ip>

If there were no errors with the ssh-copy-id command, you can proceed to test the setup. From the
controller node, ssh into the worker nodes and this time you should not be prompted for a
password.

If password-less logins are working you can proceed to the next step.

Next, we will move over to setting up NFS for shared storage.

4. Install and Setup NFS shares
Shared storage is an important part of the cluster as all worker nodes need to be able to access the
same project directories. Ideally, the NFS server should be an independent server. However, if you
are limited to the number of servers you have, this function can be installed on the controller node.
NFS is an acronym for Network File Server – the NFS server is a quick and easy way to share
centralized storage across multiple servers on the same network.

Let’s begin by updating the OS repositories and installing the necessary NFS tools. Log into the
server that will be providing the NFS or shared storage function.

sudo apt update # updates the files in the Ubuntu repository
 sudo apt upgrade # upgrades all relevant packages installed on the server
 sudo apt install nfs-kernel-server # installed the NFS tools and all dependencies

Confirm that the NFS service has been started and is running

sudo systemctl status nfs-server.service

The next step is to create a few directories that will be exported / shared with the servers in the
cluster.

NOTE:

• These instructions assume that you have already configured the storage in the NFS server.
These instructions will only cover installing the NFS tools and exporting the shared storage
to servers in the cluster.

The number of directories you decide to share with the cluster is up to you. However, I prefer to
create multiple directories to house the various types of data – see the list below:

• Scratch – this space is used as a temporary storage area for data processing
• Projects – is the space used to hold project related data. There is a project directory per

project.
• Archives – similar to the projects directory but this space contains just the raw, original data.
• Datasets - these are reference datasets should they be needed for your analysis needs.
• Compute_home - this is the shared home directories and will be mounted over the local

server’s home directory
• /opt/exp_soft – this space is used to install all the software tools that will be used by users

of the cluster.

The above directories can be generated in a single command.

sudo mkdir -p /highlevel-share-directory/{scratch,projects,compute_home,datasets,archives}
 sudo mkdir /opt/exp_soft/

Once all the directories have been created, modify the ownership and permissions. This guide will
not discuss the ownership and permissions in details. For details instructions on how to assign
permissions and file / directory ownership, look at the first guide in this series “Linux - Getting
Started” <insert-hyper-link-here>

With the permissions and ownership in place, we need to configure the NFS server and tell it which
clients will be accessing the various shares. Only machines listed below will be able to access the
shared storage. Client machines able to access the shared storage is listed in the /etc/exports file.
Let us edit this file and add our cluster servers to the list of clients.

 sudo vim /etc/exports

Add the machines to the bottom of the file

SLURM cluster

<shared/directory> <workernode-ip>(rw,fsid=0,nohide,insecure,no_subtree_check)

NOTE:

• Add additional rows as needed. You should have one row per server connecting to he
shared storage.

• If you are only sharing the high-level directory, the above should suffice. If however, you are
sharing each directory individually, then there needs to be a line for each shared directory
for each server in the cluster.

• All the rows will be the same except for the IP and shared directory which would change to
the IP of each server connecting to the shared storage and the specific shared directory
being shared.

Once done, save the file and refresh and export the list of directories

 sudo exportfs -rav

r – reexport all directories
a – export all directories
v -verbose

The NFS server is now setup and exporting shared directories. Next, we need to log into the cluster
machines and make mount points to mount the above shared directories. We will use the same
directory hiarchy as we used in the NFS server installation. On all the servers that will mount the
shared storage, create the below list of directories.

sudo mkdir -p /highlevel-share-directory/{scratch,projects,compute_home,datasets,archives}
 sudo mkdir /opt/exp_soft/

NOTE:

• To make things easier, you can also put this into a script to run across all the servers in the
cluster to create the directory structure.

• Alternatively, you can use Ansible to update all servers with the above configuration and
edits.

Now add the mount points to the login server, controller server and each worker node in the cluster
by editing the /etc/fstab file on each of the above servers. By adding the mount points to the
/etc/fstab file, all shared directories will be mounted on system reboot.

On each server in the cluster,

sudo vim /etc/fstab

Add the below lines to the bottom of the file

SLURM cluster mount points

<IP-of-NFS-server>:<spath-to-shared-scratch> <local-mount-point> nfs defaults,async 1 1
<IP-of-NFS-server>:<spath-to-shared-projects> <local-mount-point> nfs defaults,async 1 1
<IP-of-NFS-server>:<spath-to-shared-datasets> <local-mount-point> nfs defaults,async 1 1
<IP-of-NFS-server>:<spath-to-shared-archives> <local-mount-point> nfs defaults,async 1 1
<IP-of-NFS-server>:<spath-to-shared-compute_home> <local-mount-point> nfs defaults,async 1
1
<IP-of-NFS-server>:<s/opt/exp_soft> <local-mount-point> nfs defaults,async 1 1

With the mount points added in fstab, mount the NFS shares in the current sessionwith the below
command.

 sudo mount -a

NOTE:
If you get an error similar to the below, install the nfs-common packages

mount: /global5/scratch: bad option; for several file systems (e.g. nfs, cifs) you might need a
/sbin/mount.<type> helper program.

 sudo apt install nfs-common

You should now be able to mount the directories listed in fstab

RECAP

Once all the cluster nodes are able to talk to / PING each other via the network, the compute nodes
are able to access the internet via the controller node, all the shared NFS directories have been
mounted on all machines in the cluster – you can move onto installing and configuring SLURM on the
cluster.

5. SLURM – Installation and Configuration
SLURM (Simple Linux Utility for Resource Management) is an open-source workload manager often
used on High Performance Clusters (HPC).

The below image highlights the various components of a SLURM setup

Source: https://slurm.schedmd.com/quickstart.html

The basic component of a SLURM cluster is a central controller that manages job submission. A
database to contain information and worker nodes. The controller and the database can reside on
the same server or on separate servers. Munge is used for worker node authentication.

https://slurm.schedmd.com/quickstart.html

The controller runs the slurmctld process (SLURM) and slurmdbd process (Database). For this setup,
we will be using the MariaDB database server.

SLURM and munge is installed on all machines in the cluster. On the controller, we will start and run
the slrumctld.service and slurmdbd.service services.

The worker-nodes will run the slurmd.service service

all machines will run the munge service.

5.1. SLURM controller setup
First, install all the required SLURM tools onto the controller

sudo apt install -y mailutils slurm-wlm slurm-wlm-doc sview slurmdbd mariadb-server

• mailutils # send email from the cli
• slurm-wlm # main slurm package
• sview # GUI to view and modify SLURM state
• slurm-wlm-doc # SLURM documentation
• mariadb-server # Mariadb database server (based on MySQL)
• slurmdbd # Secure enterprise-wide interface to a database for SLURM. This service does

not have to be installed on the same server as the SLURM controller. In fact, best practices
suggests that this service is installed on a separate machine.

In the above command we are installing “mailutils” which will allow you to send email from the cli.
This program will install postfix as a dependency. You will be prompted to configure postfix during
the installation.

Postfix initiates first. You will be prompted to select the installation type. I choose “internet site” as
this server will send email directly via smtp. We will configure postfix to be more secure once the
server is setup.

Next you are
prompted for
an email
domain. In
the below
screen set the
system mail
name to the
domain of
your
organization.
This can be

changed post installation in the “/etc/postfix/main.cf” file if need be.

The remainder of the postfix installation should not prompt you for any other information.
The other applications in the command should also complete without any further prompting.

5.1.1. Database installation and configuration
SLURM best practices suggest installing the SLUM database daemon on a separate server with high-
speed disks. This is to reduce performance related issues when running multiple large jobs. If this
installation does not expect multiple large jobs to be run, it is fine to install the database daemon on
the same server as the SLURM controller.

For the purposes of this guide, I’ve installed the database daemon on the same host as the SLURM
controller.

NOTE:

• when installing the database daemon on a separate machine, be sure to allow the MySQL or
MariaDB port “3306” through the firewall for connectivity.

if installing the SLURM database daemon on a separate node, the below database setup will need to
be done on the database server and not on the SLURM controller node.

We will first setup the database. This setup will make use of two databases. One database will
contain the SLURM accounting information while the second database will contain the SLURM job
information.

In the initial command we installed the MariaDB database server “mariadb-server” to be used as the
SLURM database backend.

In this installation, the SLURM controller and db are on the same machines so once we have secured
the default fresh installation of MariaDB, we bind the MariaDB address to the local host and create
the SLURM databases

NOTE:

• if this is a fresh installation of MariaDB then you need to access the MySQL cli with the “sudo
mariadb” login command. This will allow you to login without a password as the later
versions of MariaDB use the unix.socket authentication plug-in. This plugin makes use of a
local Linux account authentication.

• The account used in the above login command needs to have sudo rights.

Seeing as the SLURM database will run on the same vm as the SLURM controller, we edit the
mariadb configuration file and set it to listen at localhost for connections. If the database was
installed on a separate vm, we would then set the controllers IP here.

sudo vim /etc/mysql/mariadb.conf.d/50-server.cnf

look for “bind-address”, comment out 127.0.0.1 and replace it with “localhost”. Close and save the
file.

If this is a fresh installation of MariaDB, then our first task is to secure the database instance. We do
this by running the “mysql_secure_installation” script. Part of securing the database, we set a root
password + remove anonymous users + test database + disallow remote root login.

sudo mysql_secure_installation # set a root password and accept the defaults.

Ok, now we can login using the root user and begin creating the SLURM databases. SLURM requires
two databases: accounting and job database. Create the two databases and a user that will own
both databases.

NOTE:

• If you are not familiar with the MariaDB cli, note that all commands end with a
semicolon. Failure to add the semicolon will result in a command run erro.

• While not strictly necessary, to separate MySQL commands from our input, we
normally write the MySQL commands in uppercase. Should you write the full
command in lowercase characters, the command will still be valid if the context is
correct.

sudo mariadb # type in your sudo password when prompted.

Once at the mysql cli, create the databases and user. In the below example, I have named the
databases “slurm_acc_db” and slurm_job_db”. You may change this to any name of your choosing.

CREATE DATABASE slurm_acc_db; # creates the slurm_acc_db
 CREATE DATABASE slurm_job_db; # creates the slurm_job_db

now create a user and grant the user ownership of both databases. In the below example, I created
a database user with the name “slurm_usr”

CREATE USER 'slurm_usr'@localhost IDENTIFIED BY '<secret-password>';

NOTE:

• The password should not include any special characters as this creates issues when logging
into the db via the cli.

Grant full privileges to the “slurm_usr” for both SLURM databases.

GRANT ALL PRIVILEGES ON slurm_acc_db.* TO ‘slurm_usr’@localhost;
GRANT ALL PRIVILEGES ON slurm_job_db.* TO ‘slurm_usr’@localhost;

Now flush the privileges to save the above changes and bring them into effect in the current
instance.

FLUSH PRIVILEGES;

Good. Now exit out of the mariadb cli and login as the user you just created to make sure there are
no login issues. Once done, exit the MariaDB cli using the “exit” command.

 EXIT;

The database side of things are done. Before we move no, lets just make sure that MariaDB has
been started and is running.

to see if the MariaDB instance is running:

sudo systemctl status mariadb

look for the following:

first line, look for the word “enabled”. This tells you that the service is set to start on system
boot.

Second, line – look for “active (running)”. Shows that MariaDB is currently running

In the process output, look for

ubuntu-mariadb /etc/mysql/debian-start[22596]: OK

If MariaDB is not running, you can start it with

sudo systemctl start mariadb

If there have been no errors to this point, we can move onto configuring munge.

5.1.2. Munge setup
With MariaDB installed and required DB created, we can move onto configuring munge which
SLURM uses for authentication between the slurmd and slurmctl services.

Munge is automatically installed as part of the slurm-wlm installation so no need to install munge as
a separate process.

You need to generate a munge key which is copied to all nodes in the cluster. This key is used to
authenticate nodes in the SLURM cluster.

Make sure munge is installed

which munge # shows where the munge executable is located

or

whereis munge # shows where all the instances of munge can be found

https://www.digitalocean.com/community/tutorials/how-to-install-mariadb-on-ubuntu-18-04

or

sudo systemctl status munge # looks at the status of the munge service

Next edit the munge default settings to set the default location for the munge key location

sudo vim /etc/default/munge # add the below line to this file

 OPTIONS="--syslog --key-file /etc/munge/munge.key" # munge key will reside in
/etc/munge/

Next, make a backup the old key and generate a new munge key for the cluster setup that will be
used on all the nodes.

sudo cp /etc/munge/munge.key /etc/munge/munge.key.original # backups the key to
“munge.key.original”

sudo /usr/sbin/create-munge-key # generates a new munge key and saves it in the
/etc/munge/ directory

 The munge key /etc/munge/munge.key already exists
 Do you want to overwrite it? (y/N) y
 Generating a pseudo-random key using /dev/urandom completed.

5.1.3. slurmdbd setup
Now we setup the SLURM accounting database configuration file to connect to the slurm_acc_db we
created. If the slurmdb.conf file does not exist, manually create the /etc/slurm-llnl/slurmdbd.conf
file and add the below information:

Authentication info
AuthType=auth/munge
AuthInfo=/var/run/munge/munge.socket.2

SlrumDBD info
DbdAddr=<IP-of-DB server>
DbdHost=localhost
DebugLevel=4
LogFile=/var/log/slurm-llnl/slurmdbd.log
PidFile=/var/run/slurm-llnl/slurmdbd.pid
SlurmUser=slurm

Accounting database info
StorageType=accounting_storage/mysql
StorageHost=localhost
StoragePort=3306
StorageUser=slurm_usr # this is the DB user which owns the database
StoragePass=<slurm_usr-database-password>
StorageLoc=slurm_acc_db

SLURM expects reasonable sizes to be defined for the database innodb buffer_pool_size and
lock_wait_timeout setting. To determine the current size allocated to these settings, log into the
MariaDB instance and run the below commands:

There are three ways of determining what the above variables are set to.

METHOD 1: You could run the slurmdbd daemon in debug and verbose mode and review the output

 sudo -u slurm slurmdbd -Dvvv

METHOD 2: You could view these variables from within the MariaDB database server

 sudo mariadb

 SHOW VARIABLES LIKE 'innodb_buffer_pool_size';
 SHOW VARIABLES LIKE 'innodb_log_file_size';
 SHOW VARIABLES LIKE 'innodb_lock_wait_timeout';

METHOD 3: View the limits set in the my.cnf file

 sudo vim “/etc/mysql/my.cnf

If the limits set are not favourable to SLURM, you can edit them in the my.cnf file. If these variables
are not listed in the my.cnf file, you can add them. The suggested defaults are listed below:

 [mysqld]
 innodb_buffer_pool_size=1024M
 innodb_log_file_size=64M
 innodb_lock_wait_timeout=900

To configure these variables, first stop the MariaDB server

 sudo systemctl stop mariadb

Edit the my.cf file and increase the innodb_buffer_pool_size and innodb_lock_wait_timeout
settings. If these settings are not listed, add them.

 sudo vim /etc/mysql/my.cnf

edit or add the below lines:

 [mysqld]
 innodb_buffer_pool_size=1024M
 innodb_log_file_size=64M
 innodb_lock_wait_timeout=900

TIP:

The innodb_buffer_pool_size can be configured to be up to ~50% to 80% of the server’s RAM.

Now start the mariadb server’s

 sudo systemctl start mariadb

to view the status of the SLURM database:

 mysqlshow -u slurm_usr -p --status slurm_acc_db

the above command uses the slurm user to access the slurm_acc_db database. When prompted for
a password, use the slurm_usr’s password.

To list the contents of the databases

 mysqlshow -u slurm_usr -p slurm_acc_db

To list the tables of the database, login as the root or database owner and run the show tables
command

 mariadb -u slurm_usr -p

 USE slurm_acc_db

 SHOW tables;

To see the headers of a specific table

 DESCRIBE user_table;

To view a specific record in the user’s table

 SELECT * FROM user_table WHERE name=”a-name-of-a-row”

Once the checks have completed, we can start the slurmdbd service. If the service starts and runs
without error, we can move onto setting up the slurmctld service.

sudo systemctl restart slurmdbd.service
sudo systemctl status slurmdbd.service

5.1.4. slurmctld setup
The slurmctld is the service that monitors and controls the SLURM resources like job queues,
allocates resources to compute nodes.

There is a way to generate the slurm.conf file using a browser. I however found that it’s easier to
just create the /etc/slurm-lln/slurm.conf file and paste the below contents into the file. This way
you don’t have to install a cli browser on your server.

 sudo vim /etc/slurm-ll/slurm.conf

slurm.conf file generated by configurator easy.html.
Put this file on all nodes of your cluster.
See the slurm.conf man page for more information.

General

ControlMachine=nucleus
#ControlAddr=ip-of-controller>
AuthType=auth/munge
CacheGroups=0
CryptoType=crypto/munge
JobCheckpointDir=/var/lib/slurm-llnl/checkpoint
KillOnBadExit=01
MpiDefault=pmi2
MailProg=/usr/bin/mail
PrivateData=usage,users,accounts
ProctrackType=proctrack/cgroup
PrologFlags=Alloc,Contain
PropagateResourceLimits=NONE
RebootProgram=/sbin/reboot
ReturnToService=1
SlurmctldPidFile=/var/run/slurm-llnl/slurmctld.pid
SlurmctldPort=6817
SlurmdPidFile=/var/run/slurm-llnl/slurmd.pid
SlurmdPort=6818
SlurmdSpoolDir=/var/lib/slurm-llnl/slurmd
SlurmUser=slurm
StateSaveLocation=/var/lib/slurm-llnl/slurmctld
SwitchType=switch/none
TaskPlugin=task/cgroup
#MpiParams=ports=#-#
#SlurmUser=slurm_usr
#StateSaveLocation=/var/spool/slurm-llnl
#TaskPlugin=task/none

Timers
InactiveLimit=0
KillWait=30
MinJobAge=300
SlurmctldTimeout=120
SlurmdTimeout=300
Waittime=0

SCHEDULING
FastSchedule=1
SchedulerType=sched/backfill
SchedulerPort=7321
SelectType=select/cons_res
SelectTypeParameters=CR_CPU_Memory
#SelectType=select/linear
#SelectTypeParameters=

Preemptions
PreemptType=preempt/partition_prio
PreemptMode=REQUEUE

LOGGING AND ACCOUNTING
AccountingStorageType=accounting_storage/slurmdbd
AccountingStoreJobComment=YES
ClusterName=cbio
JobAcctGatherFrequency=30
JobAcctGatherType=jobacct_gather/linux
SlurmctldDebug=3
SlurmctldLogFile=/var/log/slurm-llnl/slurmctld.log
SlurmdDebug=3
SlurmdLogFile=/var/log/slurm-llnl/slurmd.log
SlurmSchedLogFile=/var/log/slurm-llnl/slurmschd.log
SlurmSchedLogLevel=3

COMPUTE NODES
NodeName=slurm-wrk-110 Procs=2 Sockets=1 CoresPerSocket=2 ThreadsPerCore=1

RealMemory=14000 Weight=4
NodeName=slurm-wrk-111 Procs=2 Sockets=1 CoresPerSocket=2 ThreadsPerCore=1

RealMemory=14000 Weight=3

PartitionName=base Nodes=slurm-wrk-110,slurm-wrk-111 Default=YES MaxTime=72:00:00 State=UP
PartitionName=long Nodes=slurm-wrk-110,slurm-wrk-111 Default=No MaxTime=UNLIMITED

Priority=1 State=UP AllowGroups=long
#PartitionName=debug Nodes=slurm-wrk-110,slurm-wrk-111 Default=No MaxTime=INFINITE

State=UP

NOTE:

• The # COMPUTE NODES section is where you will list all your worker nodes and the
associated system resources per server and which queues, they belong to.

• When referreing to the worker nodes, I use the user-friendly host names instead of the IP
addresses

• If you do not yes know what system resources your worker nodes have, you can add them
later by edting this file.

Once done, save and close the file then start the slurmctld service

sudo systemct restart slurmctld.service
sudo systemctl status slurmctld.service

NOTE:

• if there are any errors when starting the slurmdbd.service or the slurmctld.service. You can
troubleshoot by looking at the “sudo systemctl status slurmdbd.service” and log files in
“/var/log/slurm-llnl/”.

If the services start without error. You are done setting up the SLURM controller. You can move
onto setting up the worker nodes.

5.2. SLURM worker node setup
Slurm worker nodes are the servers that will execute the actual job once initiated from the SLURM
controller.

All worker nodes need to run the “slurmd” and “munge” services. Once the OS is setup and
configured, the following packages are to be installed on each worker node:

• slurm-wlm
• slurm-wlm-basic-plugins
• munge

NOTE:

• “slurm-wlm” installs “munge” + “slurm-wlm-basic-plugins” as part of the overall installation
so you only really need to install the “slurm-wlm” application

sudo apt update # update Ubuntu repositories
sudo apt upgrade # upgrade outdated applications and dependencies
sudo apt install slurm-wlm # installs SLURM

Once slurm-wlm is installed, all we need to do is copy some files from the controller to each worker
node.

• slurm.conf
• Munge.key, and
• create the following file /etc/slurm-llnl/cgroup.conf

slurm.conf
Copy the slurm.conf file from the controller node to each worker node

sudo scp /etc/slurm-llnl/slurm.conf <workernode>:path-to-remote-directory

on the worker node, move the slurm.conf file from the remote directory to the local /etc/slurm-llnl/
directory

sudo mv slurm.conf /etc/slurm-llnl/

munge.key
This is not strictly necessary, but I prefer to backup old files before replacing before editing them.
On the worker node, backup the default munge key.

sudo cp /etc/munge/munge.key /etc/munge/mung.key.original

Now copy the munge key from the controller to each worker node

sudo scp /etc/munge/munge.key <user>@<ip-of-worker-node:/etc/munge/munge.key

Good, now restart munge and test that it’s operational

mailto:suresh@10.1.1.223

sudo systemctl restart munge # start the munge service
sudo systemctl status munge # checks the status of the munge service

NOTE:

• If you get an error similar to 01 and 02 below, make sure that the munge.key file is owned
by the munge user.

01 >> Job for munge.service failed because the control process exited with error code.

See "systemctl status munge.service" and "journalctl -xe" for details.

02 after running journalctl -xe >> munged: Error: Keyfile is insecure: "/etc/munge/munge.key"
should be owned by UID 112

sudo chown munge:munge /etc/munge/munge.key

The service should start without error now. Test that munge is working. From the cli, type:

munge -n | unmunge | grep STATUS

you should see the following output:

 STATUS: Success (0)

Next create the cgroup.conf file in /etc/slurm-llnl/ directory and add the below content to the file.

sudo vim /etc/slurm-llnl/cgroup.conf

add the below

Slurm cgroup support configuration file

See man slurm.conf and man cgroup.conf for further
information on cgroup configuration parameters

CgroupAutomount=yes
ConstrainCores=yes

You can now start the slurmd service

sudo systmectl restart slurmd.service
sudo systmectl status slurmd.service

NOTE:

• If you have not already done so, please add the SLURM cluster queue and worker node
details to the slurm.conf file on the controller.

• If you modifiy the slurm.conf file on the controller, you need to recopy it to all worker nodes
as this file needs to be sync’d across all machines in the cluster.

NOTE:

• If the slurmd.service fails to start. Make sure the “cgroup.conf” file has been created and
the above text has been copied into it.

If the worker node and queue information has been added to the slurm.conf file, then you can run
the “sinfo” command to see if all the nodes show up. If you get an output similar to the below, then
your base cluster is operational. If not, review all the steps for setting up the controller and worker
nodes.

 sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
base* up 3-00:00:00 2 idle slurm-wrk-[110-111]

6. Synchronized UID and GID’s across cluster
For a cluster to be functional, beside the physical hardware and setting up the queue manager with
worker-nodes. All user’s, including the munge and default slurm user need to have their UID’s and
GID’s syc’d across the cluster. Failure to synchronize all UID’s and GID’s, will result in permission
issues later on and jobs will fail.

6.1. Manually sync UID and GID of users
It would be easier to add these instructions to a script or use a local identity manager, like LDAP to
manage user account, create. This guide however does not go into detail about developing a script
to generate user accounts acorss the cluster. For the purposes of this guide, I will go over the
manual commands to change the UID and GID of user accounts and associated files / directories.

First, we will sync the munge and default slurm users UID’s and GID’s. Check what UID and GID’s
have been assigned to these users on the controller node.

id munge

uid=112(munge) gid=114(munge) groups=114(munge)

id slurm

uid=64030(slurm) gid=64030(slurm) groups=64030(slurm)

On the worker nodes, check the UID and GID of the slurm and munge users. If they differ from the
controller node then we need to sync them to that of the controller’s UID and GID. The same would
apply to all user account generated.

Log into each worker node.

id munge # the munge UID and GID were different to the controller
 id slurm # the slurm user’s UID and GID matched the controllers

To change the UID and GID of the munge user, first stop the munge service

sudo systemctl stop munge

Change the UID and GID to match the controller

sudo usermod -u 112 munge # change the munge UID from 111 to 112
sudo groupmod -g 114 munge # change the munge GID from 113 to 114

Now find all the files and directories that are owned by the old GID and change them to the new
GID. In the below command, we just change it to the munge group.

sudo find / -group 113 -exec chgrp -h munge '{}' \; # find all the files owned by GID 113 and
change it to munge

run the same find and replace command for the UID

sudo find / -user 111 -exec chown -h munge '{}' \; # find all the files owned by UID 111 and
change it to munge.

If you have reached this stage without error, you have successfully setup your basic SLUM Beowulf
cluster. The next step is to test out your new toy by submitting a test job via SLURM.

7. Submitting a job on the SLURM cluster
There are a few ways of running jobs on the SLURM cluster.

7.1. Batch Job
A batch job or batch file will allow you to script a job to be run unattended for some time over the
cluster. The below instruction will provide the basic instruction on how to write a batch script and
how to execute it on the cluster.

Firs we create a SLURM script. Usually, we will end the file with a “.batch” extension

 sudo vim first_run.batch

To run the slurm script, use the “sbatch” commands

 sbatch first_run.batch

Basic layout of general slurm script:

#!/bin/bash
#SBATCH –job-name=first_run.batch # name of script
#SBATCH –output=/path-to-output-file_first_run-%j.out # output dir
#SBATCH –error=/path-to-error-file_first_run-%j.err # error out dir
#SBATCH –nodes=2 # number of nodes
#SBATCH –ntasks=8 # number of cores

#SBATCH –time=72:00:00 # wall time requested
#SBATCH –mem=1G # memtbin:$PATH

WORKDIR=path-to-working-directory

cd $WORKDIR

./test.sh

srun hostname

srun sleep 60

7.2. Interactive job
When you run an interactive job, you are effectively logging onto a worker node to run your job
locally. This is a two-step process. First you allocate the resources that you want. Once on the
worker node, you may run your job locally

 salloc --cpus-per-task=1 --mem=100MB # salloc request one core with 100MB or memory to
be allocated to your interactive session

 srun –pty /bin/bash # will drop you into the bash shell on the worker node

You may now run your commands. Once done, type “exit” to close the interactive job.

That is it, you have reached the end of this guide, below are a few useful SLURM commands to get
you going and some thoughts on future work.

Happy computing....

8. Useful SLURM commands
Useful SLURM commands to manage resources

Command Description

sinfo Will print information about the queue’s and the
state of your workernodes

sacct Displays the accounting data for all jobs – past
and present

squeue Shows the status of the queues

sstat -j <jobid> Shows the status of a running jobs tasks

smap Is similar to the “squeue” command.

smap -c Provides additional information

sview Is a graphical interface to interact with your jobs.
You need the X session for this to work

salloc Allows you to allocated resources for an
interactive job. Works with “srun”

srun Will execute a interactive job and works with
“salloc”

scancel [job_id] Will cancel the specified job at job_id

sbatch Will submit a batch script to SLURM

scontrol Used to view and modify SLURM’s configuration
and state.

Accepetal optoins are

- show job

- show job [job_id]

- show node [node-name]

- show config

- shutdown

sudo scontrol update NodeName=slurm-wrk-110
State=RESUME

Would change node “slurm-wrk-110” from a
downed to an “idle” state.

scontrol show node slurm-wrk-112 Will print SLURM related information about the
node “slurm-wrk112”

scontrol show config | grep SchedulerType Will list the scheduler type

9. Proposed future work
The above guide walks the reader through developing a basic Beowulf HPC cluster using the SLURM
resource manager. Once you have your cluster operational, it would be worth looking into the
below topics to secure and simplify management of the cluster.

• Review security best practices, particularly on the controller and login node.
• Shared storage usage
• Local server health and resource monitoring
• Ansible or bash scripting to keep worker nodes in sync and to minimize deployment time

For more information on future work or assistance with any content in this guide, please
communication with the H3ABioNet consortium via the H3ABioNet helpdesk
https://helpdesk.h3abionet.org

OO-END-Oo

https://helpdesk.h3abionet.org/

	Purpose
	Document Control
	Assumptions
	How to read this guide
	Abbreviations
	1. Introduction
	2. Server hardware
	3. OS Installation and configuration
	3.1. Networking
	3.1.1. SLURM controller machine setup
	3.1.2. SLURM worker node machine setup

	3.2. Date and time synchronization
	3.3. SSH keys for password-less login
	4. Install and Setup NFS shares

	5. SLURM – Installation and Configuration
	5.1. SLURM controller setup
	5.1.1. Database installation and configuration
	5.1.2. Munge setup
	5.1.3. slurmdbd setup
	5.1.4. slurmctld setup

	5.2. SLURM worker node setup
	6. Synchronized UID and GID’s across cluster
	6.1. Manually sync UID and GID of users

	7. Submitting a job on the SLURM cluster
	7.1. Batch Job
	7.2. Interactive job
	8. Useful SLURM commands

	9. Proposed future work

