

16SrRNA Intermediate Bioinformatics Online Course

Introduction to the command line and R Introduction to the command line

16SrRNA Intermediate Bioinformatics Online Course: Int_BT_2019 Trainer name

Learning Objectives

- To give a background on Unix and the fundamentals of the OS
- To introduce the shell
- To give a breakdown of command usage and some of the most important commands
- To give an intro to command line editors
- To give an intro to a compute cluster and resources manager
- To give an intro to workflow tools
- To give an intro to software containerisation

Learning Outcomes

- To understand the background of the Unix environment
- To understand the need for using the command line for scientific computing
- To be comfortable with navigating the environment, doing file and directory manipulations, and working with pipes and filters
- To understand a cluster environment basics and be able to submit an interactive job
- To be familiar with workflow tools
- To be familiar with software containerisation

What is Unix

- A stable, multi-user, multitasking operating system for servers, desktops and laptops that exists in many variants
- Unix systems are characterised by a modular design:
 - a set of simple tools that each perform a limited, well-defined function
 - with a unified filesystem as the main means of communication and
 - a shell scripting and command language to combine the tools to perform complex workflows.
- Unix flavours
 - Sun Solaris, Mac OS X, GNU/Linux, UnixWare, FreeBSD, OpenBSD, IBM IAX, HP UX
- GNU/Linux distributions
 - Difference is in package managers, directory structure, file naming, suitability (servers vs desktops)
 - Debian, Ubuntu, Fedora, openSUSE, SUSE Linux Enterprise, Scientific Linux, Redhat, CentOS

Timeline

From: From: http://commons.wikimedia.org/wiki/File:Unix_timeline.en.svg , license:

H3ABioNet

16SrRNA Intermediate Bioinformatics Online Course: Int_BT_2019 Trainer name

Fundamentals

- Different Unix flavours but fundamentally the same
 - Kernel
 - Allocates time and memory to programs, handles storage and communication
 - Shell
 - Interface between user and kernel. Command line interpreter (CLI)
 - Terminal / Console
 - Interface to the shell
- Comply to POSIX standards
- Username, password, home directory, group, permissions, default shell
- Processes (PID)
- Directory structure and files

Ubuntu files structure

trainee@mgwvm:~					
<pre>trainee@mgwvm:~\$ /bin/ /boot/ /cdrom/ /dev/ /etc/ /lib32/ /lib32/ /lib64/ /lost+found/ /media/ /mnt/ /opt/ /proc/ /root/ /run/ /sbin/ /selinux/ /srv/</pre>	ls	-1d	/*/	1	sort
/sys/ /tmp/					
/usr/					
/var/	100				

	/bin	User binaries
	/boot	Boot loader and kernel image
	/dev	Device files
-	/etc	Configuration files
-	/home	User home directories
-	/lib	System libraries
-	/lost+found	fsck restored files
	/media	Removable devices
_	/mnt	Mount directory
-	/opt	Additional software
	/proc	Process information
	/root	Superuser home directory
-	/sbin	System binaries
-	/srv	Data directory of services
	/sys	Device information
	/tmp	Temporary files
2	/usr	User programs
	/var	Variable files

Permissions

- In multi-user systems, access and access restrictions are key
- Typically, you are the owner of every file/directory you create or bring into a system
- What other files and directories you can read, write or execute will depend on how the system is set up

permissions		user / a	roup	size	tin	ne o	flast	file name	
	0	4	1000	4	100	4	14.05	A	
Inwyr-yr-y	6	root	root	120570	Eeh	8	14.95	trypanonen	
Inwards	2	auton	root	126976	Oct	6	2015	simons	
INVE-E	6	gerrit	caban	4090	Eah	23	12.22	sahan	
TWXT-S	27	gerrit	caale	4006	Oct	22	2015	caals	
ITWAT AT -X	6	root	root	4090	Nov	20	2010	other chindesian	
ITWXT-XT-X	3	ayton	root	4005	Fab	76	10:51	napmapo kan	
ITWXT-XT-X	4	gerrit	gerrit	/0	UCL	19	2018	gran	
IWXI-X	3	TOOL	root	21	Jan	14	2010	guap	
irwxrwx	10	gerrit	nsa	4096	Feb	8	14:34	baytor	
irwxr-s	.4	ayton	root	20480	Aug	23	2016	ashk	
Irwxr-x	- 4	gerrit	agvp	42	Jut	0	2015	agyp	
IFWXF-X	3	ayton	ayton	25	Feb	18	2010	аттар	
TWXT-XT-X	7	root	root	4096	Nov	17	2017		
rwxr-xr-x	15	ayton	root	245	Mar	7	16:48		

- Command line interface to the operating system (browsing file system and issuing commands)
- All in all a programming language
- Shell scripts provide a way to automate repetitive tasks
- Different shells with different features

Command anatomy

command -options/flags [input] [output]

- Depending on the command the **input** can be read from the *stdin* stream, the output from a previous command or from a file
- Depending on command the **output** can be send to the *stdout* stream, to the **input** of the next command or to a file
- Error messages are normally send to the *stderr* stream
- Do get more detail information about command flags and usage make use of the man pages. e.g. man ls

List of important commands

File management	
ls	List files
cd	Change directory
pwd	Print working directory
mkdir	Make a new, empty directory
rmdir	Remove an empty directory
ср	Copy files
scp / ssh	Do a secure copy from or to a remote machine / login to remote machine
rm	Remove files
mv	Move files or directories (rename)
find	Find files or folders based on name, date, size, ownership or other parameters
tar	Build an archive of files
gzip / bzip2	Compression tools
Permissions	
chown	Change ownership of files/directories
chgrp	Change group ownership of files/directories
chmod	Change permissions (mode) of files/directories
groups	Report the group(s) you belong to
id	Report your username, userid, group(s) and group id(s)
newgrp	Set you default group for the current shell

16SrRNA Intermediate Bioinformatics Online Course: Int_BT_2019 Trainer name

List of important commands

Resource monitori	ng
top	See the top resource-hungry processes
df	See how much disk space is free
du	Report numbers and sizes of files on disk
free	Show available and cached memory
Job control	
which	Display full path of command
ps	View active processes
<cntrl>-c</cntrl>	Kill current job
<cntrl>-z</cntrl>	Suspend current job
bg	Put suspended job in background
fg	Bring a suspended job into the foreground
Filtering/Reporting	
grep	Search for substrings in a file or pipeline
awk / sed	Pattern scanning and text processing / stream editor for transforming text
sort	Sort lines alphabetically or numerically
WC	Count lines, words, characters
cat	Print file or files to standard output
more / less	Text viewing programs
head / tail	View start or end of a file or pipeline

Redirection and piping

Piping and redirection summ	ary
> file	Output redirection, overwrite
>> file	Output redirection, append
< file	Input redirection
commandA commandB	Pipe output from commandA to commandB

Things to be aware of

- File and directory naming is case sensitive.
- Keep away from using strange characters in file names otherwise it needs to be escaped.
- Bash shell features
 - Command and filename completion with tab key
 - Browse through history with up and down keys
 - Search for previous commands with **cntrl-r**
- Many ways to accomplish the same thing using various combinations of piping together commands.
- In the shell deleting files is forever.

- Learn to use a shell editor and the shortcut keys
- Command line options for editors: vi, emacs, nano, pico
- nano is a easy editor to start with

Compute cluster

- A compute cluster consist of single machines that work together so that in many respects they can be viewed as a single system.
- A resource and scheduler monitors job resources and assigns jobs to nodes.
- A job scheduler operates efficiently if resources are fairly distributed across users of the system.
- A job scheduler uses certain criteria to decide if jobs should run e.g.
 - Job priority
 - Compute resource availability (memory/cpu)
 - Execution time allocated to user
 - Number of simultaneous jobs allowed for a user
 - Estimated execution time
 - Elapsed execution time
 - Job dependency

- PBS and SLURM are popular job scheduling systems
- Both have different ways in defining submissions scripts. See https://github.com/grbot/batch-system-comp

	PBS	JLC	711111
4	#1/hin/hash	1 #!/bin/bash	
*	WDDQ 1 redes dress d	2 #SBATCH -N 1	
2	#PBS -1 hodes=1:ppn=1	<pre>3 #SBATCHntasks-per-node=1</pre>	
3	#PBS -1 walltime=01:00:00	4 #SBATCH -t 01:00:00	
4	#PBS -N ech_count	5 #SBATCH -J echo_count	
5	#PBS -d .	6 #SBATCH -o echo_count.o%j	
6	<pre>#PBS -M gerrit.botha@uct.ac.za</pre>	<pre>7 #SBATCH -e echo_count.e%j</pre>	
7	#PBS -m abe	8 #SBATCHmail-user=gerrit.botha	@uct.ac.za
8	#PBS -q UCTlong	9 #SBATCHmail-type=begin	
9		10 #SBATCHmail-type=end	
10	##### Running commands	11 ##SBATCH -p Main	
4.4	acha "Data is "idata	12	
0.02	echo Date IS , date	13 ##### Running commands	
12	echo "hostname is ";hostname	14 echo "Date is ";date	
13	exe="echo_count.sh count.txt 100"	15 echo "hostname is ";hostname	
14	\$exe	<pre>16 exe="./echo_count.sh count.txt 1</pre>	00"

16SrRNA Intermediate Bioinformatics Online Course: Int_BT_2019 Trainer name

SLURM

PBS and SLURM interactive sessions

• PBS doing an interactive submission (getting onto a compute node, requesting 1 node and 1 core and reserve for 2 hours)

- \$ qsub -I -l nodes=1:ppn=1 -l walltime=02:00:00

• SLURM doing an interactive submission (getting onto a compute node, requesting 1 node and 1 core and reserve for 2 hours)

- \$ srun --nodes=1 --ntasks=1 --time=120 --pty bash

Nextflow

Workflow tools

Provides a language and engine Language are based on Groovy Relative easy to learn and can easily be applied to simple and large workflows Not modular at moment but will be in DSL 2.0 Nextflow example code on Ilifu are here with demo here <u>CWL</u> (Common Workflow Language) Language only, tools such as cwltool an Toil provides the engine Modular and very structured Large community support similar to what is found for Nextflow. <u>WDL</u> (Workflow Descriptive Language) Language only, Cromwell provides the engine Used by Broad Institute and supported in GA4GH workflows.

16SrRNA Intermediate Bioinformatics Online Course: Int BT 2019 Trainer name

Software containers

- A container is a standard unit of software that packages up code and all its dependencies so the application runs quickly and reliably from one computing environment to another.
- Use operating-system-level virtualization to deliver software in packages called containers
- Most popular technologies are Docker and Singularity
- Depending on what is available at you facility it is sometimes a less administrative hassle to package your software or software suite in a container.
- Before building a container have a look at <u>https://quay.io/organization/biocontainers</u> to see if an image of the tool does not exist already.
- SIngularity images can be build from Docker images
- Due to Docker security issues it is most likely that only Singularity is supported on your cluster environment.

16SrRNA Intermediate Bioinformatics Online Course: Int_BT_2019

Introduction to the command line and R Introduction to the command line Practical

16SrRNA Intermediate Bioinformatics Online Course: Int_BT_2019 Trainer name

For this practical we are going to go through the Software Carpentry's Introduction to Unix shell.

Please ask your teaching assistant what is the appropriate why for you to get to a shell / command line. Whether it is working on your own machine, a remote server or working on a compute node by launching an interactive job.

The breakdown the specific sections can be found <u>here</u>

We will focus on

- 1. Introducing the shell
- 2. Navigating files and directories
- 3. <u>Working with files and directories</u>
- 4. <u>Pipes and filters</u>

You have 20 minutes to spend on each section. After that we will quickly run through the section, look at the solutions and key points and then move on to the next.

You would have received an assignment with questions for each section that needs to be filled in and returned.

First we need to setup the data you would be working with. Follow the instructions <u>here</u>.

- wget http://swcarpentry.github.io/shell-novice/data/data-shell.zip
- unzip data-shell.zip

The data-shell directory contains the data that you will be working with.

Now you are setup and ready and can move onto section $\underline{1}$, then $\underline{2}$, then $\underline{3}$ and finally $\underline{4}$.

Note: In this practical we will not be doing the section Loops, Shell Scripts, Finding Things and Shell Extras. Feel free to work through those section in your own time because it contains tools and methods that will improve your command line efficiency.

