One-Year Coursework and Dissertation Bioinformatics MSc Programme at Rhodes University

Özlem Taştan Bishop Research Unit in Bioinformatics (RUBi), Rhodes University <u>www.rubi.ru.ac.za</u> o.tastanbishop@ru.ac.za

November 2009 – February 2010

RUBi -2010

RUBi -2011 Bioinformatics MSc programme started!

RUBi -2012

RUBi - 2014

- 6 PhD (+1 Biochem PhD)
- 8 MSc (one-year programme)
- 1 MSc (2 years research thesis)
- 2 Honours

Who is in RUBi

- Head of the Unit
 - OzlemTastan Bishop (Biochemistry & Microbiology)
- Core members
 - Philip Machanick (Computer Science, 2012)
 - Kevin Lobb (Chemistry, 2011)
- Academic staff
 - Jeremy Baxter (Statistics)
 - Nigel Bishop (Mathematics)
 - Mike Burton (Mathematics)
 - Adrienne Edkins (Biochemistry & Microbiology)
 - Mike Ludewig (Biochemistry & Microbiology, Postdoc)
 - Denis Pollney (Mathematics)
- External lecturers
 - Fourie Joubert (UP)
 - Oleg Reva (UP)
 - Gustavo Salazar (UCT, PhD student)
 - Jane Wright (Forensic company)

One-year Coursework and Dissertation MSc Programme:

In detail

Since bioinformatics is interdisciplinary, the programme accepts students from different backgrounds, and aims to bring them to an equal level of interdisciplinary knowledge.

The aim is to produce MSc graduates with a strong foundation.

The one-year MSc programme provides a bridging role; one end with multiple legs to get students from different disciplines, and the other end to transfer those suitable to a bioinformatics PhD degree.

Details of MSc Students

Year	Student number	Country	Gender	Background	Financial support	PhD continuation	Bioinformatics related employment
2011	3	1 South Africa 2 Kenya	1 Female 2 Male	1 Biochemistry 1 Biomedical Technology 1 Pharmacy	All University or government supported	1 at Rhodes University	1 in Kenya
2012	7	3 South Africa 3 Kenya 1 Nigeria	4 Female 3 Male	3 Biochemistry 1Biochemistry/Microbiology 1 Medical Laboratory Science 1 Medical Microbiology 1 Zoology	All University or government supported	2 at Rhodes University 1 at University of Pretoria 2 at University of Western Cape 1at University of the Witwatersrand	
2013	4	2 South Africa 1 Kenya 1Zimbabwe	4 Male	2 Biochemistry 1 Biotechnology 1 Mathematics/Comp Science	All University or government supported	3 at Rhodes University	
2014	8	4 South Africa 1 Botswana 1 Lesotho 2 Zimbabwe	3 Female 5 Male	1 Biochemistry 2 Biochemistry/Microbiology 1 Biotechnology 1 Chemistry 1 Mathematics/Comp Science 1 Microbiology 1 Molecular and Cell Biology	6 University or government supported 2 self supported	N/A	N/A

History

- Ran in 2003 and 2004
- 6 months NBN central training
- NBN closed down in 2008
- Re-initiated in 2011

Overview of the Programme

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	<u> Coursework</u> Project proposal E E				B PP	Pr	oject P	& The	esis	FP	

- B Break
- E Exams
- PP Project proposal presentation
- P Progress report presentation
- **FP** Final presentation

Overview of the assessment

- The coursework and the research project each contribute 50% to an overall mark.
- Successful completion of the degree is subject to a final mark of at least 50%, provided that a candidate obtains at least 50% for the coursework, with a sub-minimum of at least 40% from each module, and at least 50% for the project thesis.

Overview of the assessment

- The coursework modules are assessed by internal grading of tutorials, assignments, tests and practicals, etc. to give a class mark, and by internal and external grading of examinations.
- For each module, the weighting for the class mark is 40%, and for the examination is 60%. The weightings of the various modules in the calculation of the overall coursework mark is proportional to the number of lectures given.

Overview of the assessment

- The project is graded internally by evaluating
 - project proposal and presentation (10%)
 project results and presentations (30%)
- The thesis (60%) is graded externally by two external examiners.
- The university prefers that at least one of the external examiners be international.

Coursework

~		-
Core modules	Content	Duration-contact hours
	• Linux operating system and software installation	20
Introduction to Linux	• Use of Linux and Linux shell commands	20
	Application to bioinformatics problems	
Introduction to Programming	Basics for (Python) programming	10
Python for Bioinformatics	 Introductory and advanced Python 	75 & 1 week for
	Biopython	assignment
Basic Mathematics	 Review of basic calculus 	
	 Review of linear algebra 	15
Mathematical Programming	• The MATLAB computational environment, MATLAB	
	scripts, graphical output, functions, systems of linear and	20
	non-linear equations, differential equations	
	• Use of the Bioinformatics Toolbox	
Statistics	Introductory statistics	
	R: statistical software	25
Basic Genomics – Part I	Genome sequencing techniques	
	• DNA and protein databases; database searching	25
	Databases and API	
	Sequence alignment	
Basic Genomics – Part II	Discovering features of interest in DNA including	
	transcription factor binding sites	25
	• Using genome browsers to obtain data	
	• Using web services and the command line to	
	performance genome-wide and specific sequence	
	analyses	
Comparative Genomics	• Introduction to pairwise and multiple complete genome	
comparative concines	alignment	25
	Phylogenomics	
	Genome evolution and horizontal gene transfer	
	New approaches techniques and challenges	
Structural Bioinformatics – Part I	Protein visualization programs:	
Structural Diomiormates Tarti	Structural biology techniques	25
	Template and non-template based protein structure	
	prediction methods	
	Homology modeling in detail	
Structural Bioinformatics – Part II	• NMR	
Structural Diomiormatics Tart II	• Docking (Autodock)	25
	Molecular dynamics	20
	• Molecular dynamics	

Coursework

Supplementary modules	Content	Duration- contact hours
× *	Introduction to databases	
Databases	 Introduction to web frameworks 	25
	• MySQL; Django	
	Origins of artificial neural networks, perceptrons: their	
Neural Network	construction and deployment, convergence of	25
	perceptrons, gradient descent for optimisation, general	
	feed-forward networks with differentiable transfer	
	functions, backpropagation, training, assessing	
	performance, construction and deployment of feed-	
	forward neural networks for prediction and pattern	
	recognition, various applications, problems.	
Phylogenetics	Introductory phylogenetics covering neighbor-joining in	
	detail and the principles of maximum likelihood and	25
	Bayesian inference. Bootstrap analysis, evolutionary	
	models and comparison of tree topologies.	

Project component

- Time dedicated purely to research is very limited (July December)
- Techniques used to increase research efficiency and critical thinking ability of students
 - Freedom in the project
 - Project presentations
 - Weekly research meetings
 - Thesis update every two weeks
 - Journal club meetings
 - Public bioinformatics talks and private meetings to improve presentation skills group

RURi

Research Projects

Year	Thesis title	Methodology used – Novel findings
2011	In silico Characterisation of the Four Canonical	Data retrieval, sequence alignment, homology modeling, protein-protein interaction analysis
	Plasmodium falciparum 70 kDa Heat Shock Proteins	* A novel modeling method was suggested
	Structural Analysis of Prodomain Inhibition of Cysteine	Data retrieval, sequence alignment, phylogenetic tree analysis, homology modeling, interprotein bonding analysis
	Proteases in Plasmodium Species	*Few short peptides as potential inhibitors were designed
	Structural Analysis of Effects of Mutations on HIV-1	Data retrieval, sequence alignment, homology modeling, large scale ligand docking
	Subtype C Protease Active Site	* South African HIV-positive infants were analysed for drug related mutations
2012	Falcipains as Malarial Drug Targets	Data retrieval, sequence alignment, phylogenetic tree analysis, homology modeling, ligand docking, protein-
		ligand interaction analysis
		* A South African natural product was identified as a potential malarial inhibitor
	Sequence and Structural Investigation of the Nonribosomal	Genome annotation for NRPS modules, phylogenetic studies, homology modeling and structural analysis, motif
	Peptide Synthetases of Bacillus atrophaeus UCMB	analysis
	5137(63Z)	* New modules were identified and linker regions were analysed
	In silico Analysis of Plasmodium falciparum Hop Protein	Data retrieval, sequence alignment, phylogenetic tree analysis, motif analysis, homology modeling, protein-
	and Its Interactions with Hsp70 and Hsp90	protein interface analysis, alanine scanning
		* New Hop-Hsp90 binding region was modelled and differences between human and parasite proteins were
		identified
	Structural Bioinformatics Analysis of Plasmodium DNAJ	Data retrieval, large scale sequence alignment, grouping, homology modeling, docking, protein-protein
	Proteins and the Interactions with Plasmodium falciparum	interaction analysis
	Hsp70s	* New Plasmodium DNAJ proteins identified
	Structural Bioinformatics Analysis of the HSP40 and	Data retrieval, large scale sequence alignment, grouping, homology modeling, docking, protein-protein
	HSP70 Molecular Chaperones from Humans	interaction analysis
		* Detailed analysis between Hsp40 and Hsp70 was done
	Influence of Non-Synonymous Sequence Mutations on the	Data retrieval, sequence alignment, homology modeling, large scale ligand docking, protein-ligand interaction
	Architecture of HIV-1 Clade C Protease Receptor Site:	analysis, preliminary MD calculations
	Docking and Molecular Dynamics Studies	* Analysis on differences on drug resistance between Clade B and Clade C showed interesting results
	A central enrichment-based comparison of two alternative	Data retrieval, motif enrichment analysis
	methods of generating transcription factor binding motifs	* Differences in motif quality across two competing databases measured
	from protein binding microarray data	
2013	A Step Forward in Defining Hsp90s as Potential Drug	Data retrieval, analysis of physicochemical properties (in large scale), phylogenetic tree calculations, motif
	Targets for Human Parasitic Diseases	analysis (script based analysis), SCA analysis (co-evolution studies)
		* Some important differences between the parasite and human Hsp90 proteins were identified
	Large Scale Bioinformatics Analysis of Auxiliary Activity	Data retrieval, sequence alignment, phylogenetic tree analysis, motif analysis, homology modeling
	Family 9 Enzymes	* A novel sub-type group is identified
	Transcription factor binding: Investigating the role of	Data retrieved, statistical analysis
	distance between transcription factor binding site and	* Differential locality of transcription finding with respect to transcription start site measured
	transcription start site	
	Analysis of transcription factor binding specificity using	Data retrieval, differential motif enrichment analysis
	ChiP-seq data	* Differential motif enrichment across cell lines measured

Outcomes

- Research-productive graduate students
 - Over 70% (10 out of 14) of completing students have continued in PhD programmes in various South African universities
 - Only one student (7%) has, to date, moved on to bioinformatics-related employment (Biosciences Eastern and Central Africa, Kenya)
 - We have no information on the remaining 3 students.
- As the research time is very limited, the projects are small and do not lead to publications immediately. When students stay on for a PhD degree, there is more opportunity to complete the project and write a papers

Details of MSc Students

Year	Student number	Country	Gender	Background	Financial support	PhD continuation	Bioinformatics related employment
2011	3	1 South Africa 2 Kenya	1 Female 2 Male	1 Biochemistry 1 Biomedical Technology 1 Pharmacy	All University or government supported	1 at Rhodes University	1 in Kenya
2012	7	3 South Africa 3 Kenya 1 Nigeria 2 South Africa	4 Female 3 Male 4 Male	3 Biochemistry 1Biochemistry/Microbiology 1 Medical Laboratory Science 1 Medical Microbiology 1 Zoology 2 Biochemistry 1 Biotechnology	All University or government supported All University or government	 2 at Rhodes University 1 at University of Pretoria 2 at University of Western Cape 1 at University of the Witwatersrand 3 at Rhodes University 	
		1 Kenya 1Zimbabwe		1 Mathematics/Comp Science	supported		
2014	8	4 South Africa 1 Botswana 1 Lesotho 2 Zimbabwe	3 Female 5 Male	1 Biochemistry 2 Biochemistry/Microbiology 1 Biotechnology 1 Chemistry 1 Mathematics/Comp Science 1 Microbiology 1 Molecular and Cell Biology	6 University or government supported 2 self supported	N/A	N/A

<u>Required infrastructure and administrative support:</u>

- Lack of a dedicated Linux computer laboratory:
 - a seminar room was converted into a lecture room
 - laptops are provided to the students (excellent mobility)
 - All the lectures and practicals are held in the same place
 - For large computational runs, server access is provided
- Lack of adequate system administrative support:
 - extra load for to the course coordinator/faculty
 - Linux module teaches students how to install Linux and how to handle basic system administration
 - This approach adds to the skills acquired by the students

Challenges and our solutions <u>Range of topics</u>:

- The programme is unable to cover every bioinformatics topic:
 - limited staff members
 - time limitations

Most of the specialized bioinformatics modules are designed according to the research interests of the supervisors, and further learning in these topics is supported by research projects. Although students are not exposed to a wide range of bioinformatics topics, they gain strong background in core bioinformatics modules, and they learn how to do independent research on new bioinformatics topics.

Collaborative effort from different departments:

- The challenge : to familiarize lecturers from other research fields with bioinformatics applications:
 - For instance, a lecturer might be excellent in teaching mathematical programming and Matlab, but he or she might not be familiar with the bioinformatics tool kit.
 - In these cases, a bioinformatics lecturer also participates to help the Matlab lecturer bridge the two fields.

Diversity of students:

- It is challenging to take students from a diverse range of backgrounds and levels, and teach them bioinformatics in depth in a short time.
 - However, this diversity is used as an advantage in the programme by encouraging students with different backgrounds to work together.
 - Furthermore, having students with different backgrounds has important impacts in the classroom, as they analyse a topic from different angles.

<u>Finding examiners:</u>

- One of the biggest difficulties that we have is to find external examiners to review all the research theses at once.
- Consistent marking process!
- Each of the research theses is about 100 pages!

Conclusion

- Modules aim to bridge gaps in the diverse backgrounds of students who range from biologists with no prior computing exposure to computer scientists with no biology background.
- The programme is evenly split between coursework and research, with diverse modules from a range of departments covering mathematics, statistics, computer science and biology, with emphasis on application to bioinformatics research.
- The early focus on research helps bring students up to speed with working as a researcher.
- We measure success of the programme by the high rate of subsequent entry to PhD study: 10 out of 14 students who completed in the years 2011-2013.

