

Introduction to Genome-Wide Association Studies

H3ABioNet Data Management Workshop Shaun Aron June 2014

Outline

- Introduction to GWAS
- GWAS concepts
- GWAS design considerations
- GWAS data analysis process
- PLINK data formats

Identification of disease genes

- Identification of genes that contribute to disease risk is one of the main research areas of molecular biology
- Successful methods have been used for the identification of disease genes for several single gene disorders
- In most single gene disorders a single mutation in a gene is completely responsible for the phenotype

Identification of disease genes

- Complex common diseases such as obesity, cardiovascular disease, cardiometabolic disease, diabetes etc. usually occur as a result of variations in several different genes together with environmental factors
- Each variation has a small effect on the phenotype
- In most instances these are common variants

Terminology

- DNA ~ genome
 - Base pairs that make up the genome , adenosine (A), guanine (G), cytosine(C), thymine(T)
- Single nucleotide polymorphism (SNP)
 - Variations in the DNA that occur commonly in at least one population i.e. >1% e.g at a particular position in the genome there can be an A or a G in a population
- Allele
 - Each SNP has two alleles one from each chromosome
- Mutation
 - A source of DNA variation usually disease causal
- Point mutations
 - Changes that occur in DNA, source of SNPs and mutations

Complex diseases

Classic approaches to disease gene identification

- Traditional heritability
 - Does it run in families?
- Design
 - Family, twin and adoption studies
- Molecular data
 - o None
- Desired outcome
 - Gives us a clue as to whether there is a genetic component

Matt McQueen, , Colorado University, Boulder – Intro to GWAS

Classic approaches to disease gene identification

- Traditional linkage
 - Find genomic loci linked to disease
- Design
 - Family-based
- Molecular data
 - o 300 600 repeat markers
- Desired outcome
 - Find genetic region linked to disease

Matt McQueen, , Colorado University, Boulder – Intro to GWAS

Genome-Wide Association

• GWAS

Find common alleles associated with disease

Design

Cohort, case-control, family-based

- Molecular data
 - 500 000 2.5M single nucleotide polymorphisms
- Desired outcome
 - Find common genetic variation associated with disease

Matt McQueen, Colorado University, Boulder - Intro to GWAS

What is an association study?

- Association refers to the co-occurrence of a genetic variant with a disease trait, more frequently than can be explained by chance
- Candidate gene approach was the first type of association study
 - Select a gene linked to a phenotype based on biological function
 - Sequence that gene in affected and unaffected samples
 - Identify mutations that associate more with affected samples than unaffected samples

GWAS

Genome-Wide Association Study Concepts

Why SNPs?

- Several types of variants in the human genome
 - o SNPs
 - Insertions/deletions
 - Chromosomal mutations
 - Copy number variants
- SNPs are the most common type of genetic variation
 In the latest version of dbSNP (141) there are 62 387 983 SNPs identified in the human genome
- SNPs occur randomly throughout the genome
- Can be accurately measured as they have previously been identified and characterised

SNPs

- A SNP is a position on the genome where there is a significant variation in at least one human population
- In complex diseases the co-occurrence of SNPs in various regions can contribute to a phenotype

Common disease – common variant hypothesis

- Common diseases are likely to be due to common genetic variations
- Each variation will have a small contribution to the phenotype
- Variations in multiple regions of the genome in combination with environmental factors affect susceptibility to the phenotype

Disease allele effects

Allele Frequency

So what SNPs do we use?

- 60 million human SNPs
 - Current technologies allow for the interrogation of up to 2.5 million SNPs at a time
- Need a good method to select the most informative SNPs
- All SNPs in the human genome are not independent
- Concept of linkage disequilibrium (LD) used to select SNPs

LD and selecting tagSNPs

Decay of Linkage over successive generations

Linkage Disequilibrium Within A Population

Population moves from Linkage Disequilibrium to Linkage Equilibrium over time

 Minimal set of SNPs required to represent most SNPs in the human genome

Important considerations

- LD varies between populations
 - HapMap data is based on a set of defined populations
 - African populations are represented by samples from
 - Ibadan, Nigeria
 - 1000 genomes project has generated further data from African populations based on sequencing data
 - Ibadan, Nigeria
 - Luhya, Kenya
 - African Americans (admixed)
- Important to note that SNP microarray chips are based on tagSNPs based on LD in European populations

GWAS technology

 Shaun Aron - H3ABioNet Data Management Workshop June 2014

A complete range of tools and services for every need.

GWAS data

GWAS process

Design considerations for a GWAS

 $\bullet \bullet \bullet$

Designing a GWAS

- Study design
 - Case versus control or quantitative
 - Quantitative traits more widely used in GWAS
- Phenotype criteria and measurement
 - Standardised method for taking phenotype measurements
- Sample population homogeneity
 - Sample should be collected from individuals with similar genetic ancestry

GWAS data analysis workflow

 \bullet \bullet \bullet

GWAS data

- Most service providers will provide you with either raw CEL. files or genotype call files
- The raw CEL files contain the raw intensity values from the microarray chip
- The genotype file will contain the actual alleles
 called for each SNP
- CEL. files are ~700Mb per sample (dependent on array)
- Various methods available for calling genotypes from raw cell files

Genotype calling

Algorithm	Insitute	Reference
Birdseed	Affymetrix/Broad	Korn et.al 2008 Nat Gen 40:1253-1260
BRLMM	Affymetrix	Cawley et al. 2006
CHIAMO	WTCCC	WTCCC 2007 Nature 447:661 -78
CRLMM	John Hopkins University	Carvalho et al. 2007 Biostatistics 8:485- 99
GEL	University of Chicago	Nicolae et al. Bioinformatics 22:1942-7
JAPL	Wellcome Trust, Cambridge	Plagnol et al. 2007 PLoS Genetics 3:e74
SNiPer-HD	Texas A&M University	Hua et al. 2007 Bioinformatics 23:57-63

PostGWAS analysis

Replication and validation

PLINK data formats

 \bullet \bullet \bullet

PLINK data formats

- PLINK is a commonly used tool for manipulating and analysing GWAS data (Purcell, 2007)
- PLINK has multiple data formats for GWAS data

• PED format

PED files contain individual information
MAP file contains SNP information

PLINK data formats

- PED file
 - One row per individual, Defined set of columns:
 - Family ID
 - Individual ID
 - Paternal ID
 - Maternal ID
 - Sex (1=male, 2=female, other=unknown)
 - Phenotype (missing = -9, control=1. case=2, or QT values)
 - Pair of columns per SNP Different encoding formats

PED File

HCB184 1 0 0 1 1 2 2 1 2 2 2 1 1 2 2 2 2 HCB186 1 0 0 1 1 2 2 2 2 2 2 1 1 2 2 2 2 2 HCB187 1 0 0 1 1 2 2 2 2 2 2 1 2 1 2 2 2 2 HCB188 1 0 0 1 1 2 2 1 2 2 2 1 1 2 2 2 2 HCB191 1 0 0 1 2 1 2 2 2 2 2 1 2 1 2 2 2 2

MAP file

1	rs3094315	0	742429
1	rs3131972	0	742584
1	rs12562034	0	758311
1	rs12124819	0	766409
1	rs11240777	0	788822
1	rs6681049	0	789870
1	rs4970383	0	828418
1	rs4475691	0	836671
1	rs7537756	0	844113
1	rs13302982	0	851671
1	rs1110052	0	863421
1	rs2272756	0	871896

- One row per SNP, set of defined columns
 - Chromosome number 1...26 (X, Y, XY, MT)
 - SNP ID (dbSNP)
 - Genetic distance (Morgans)
 - Base pair position

Binary PED format

- Faster, more efficiently accessible and compact format
 - FAM file
 - One row per individual identification information first 6 columns of PED file). Human readable
 - o BIM file
 - One row per SNP. MAP file PLUS the two alleles for that SNP. Human readable
 - o BED file
 - One row per individual genotype information (rest of the columns of the PED file). Not human readable

FAM file

NA18622_GW6_A.CEL NA18622_GW6_A.CEL 0 0 u -9 NA18981_GW6_A.CEL NA18981_GW6_A.CEL 0 0 u -9 NA18564_GW6_A.CEL NA18564_GW6_A.CEL 0 0 u -9 NA18620_GW6_A.CEL NA18620_GW6_A.CEL 0 0 u -9 NA11831_GW6_C.CEL NA1831_GW6_C.CEL 0 0 u -9 NA18524_GW6_A.CEL NA18524_GW6_A.CEL 0 0 u -9 NA11993_GW6_C.CEL NA11993_GW6_C.CEL 0 0 u -9 NA12239_GW6_C.CEL NA12239_GW6_C.CEL 0 0 u -9 NA10860_GW6_C.CEL NA10860_GW6_C.CEL 0 0 u -9 NA18992_GW6_A.CEL NA18992_GW6_A.CEL 0 0 u -9 NA18992_GW6_A.CEL NA18992_GW6_A.CEL 0 0 u -9 NA18603_GW6_A.CEL NA18603_GW6_A.CEL 0 0 u -9

BIM file

1 rs3131969 0 754182 G G 1 rs1048488 0 760912 T T 1 rs12562034 0 768448 A G 1 rs12124819 0 776546 A A 1 rs4040617 0 779322 A A 1 rs2905036 0 792480 T T 1 rs4245756 0 799463 C C 1 rs12086311 0 808769 G G