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Genome sequencing and Variant Calling 
 

Introduction to using NGS for Variant Detection 
»  Sequencing Technologies, specifically Illumina 

»  File Formats, FASTQ, SAM, BAM, vcf, bcf 

»  QC steps 

»  Variant Calling (data processing) 

Tea Break 

»  Computational Requirements 

»  Data Storage 

»  Processing Capacity 

Brief Introduction to using NGS for microbiome analysis 
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Introduction to using NGS for Variant Detection 

4 



Human genomic diversity 

»  All anatomically modern humans outside Africa descend from a set of 
relatively small populations that left the continent less than 100,000 years 
ago. Populations within Africa are much more genetically diverse. 

»  Until ~500 years ago, there was relatively little admixture between these 
populations except from events linked to a few large-scale migrations (e.g. 
invasions of Europe by Central Asians). 

»  The phenotypic and genotypic diversity seen among these populations 
stems from two factors: genetic drift and selection based on reproductive 
fitness. Cultural as well as environmental differences affect traits conferring 
increased reproductive fitness. 

»  Extensive genotyping has made it possible to correlate sets of genetic 
variants (haplotypes) with very specific populations and to reconstruct the 
ancestry of many living individuals. 



Wandering humans 

Source: National Geographic, 2009 

Modern humans 
migrated out of Africa, 
gradually populating the 
globe in relatively small 
groups. Current human 
genetic diversity mirrors 
the routes and timings 
of these migrations. 



How diverse are we? 

Data from 1000 Genomes project 
(Nov 2012) 

a.  Variation across populations 
(Americas, Africa, East Asia, 
Europe) in a 90 kb genome 
interval 

b.  Frequency of private, 
continent-specific and 
population-specific variants 

c.  Density of variants as a 
function of their frequency 



How do human genomes differ? 
Single nucleotide polymorphisms (SNPs): 
»  At a given position in the genome, some haplotypes carry one nucleotide 

while others carry another; the vast majority of SNPs are bi-allelic 

»  It is believed that the vast majority of SNPs present at a minor allele 
frequency of >5% worldwide have been characterized and deposited in 
dbSNP, although this may not be true for some African populations 

Copy number variants (CNVs): 

»  Many regions of the genome have been duplicated during evolution, and 
there are haplotypic differences in copy numbers between individuals; 
CNVs can range between a few nucleotides and tens of thousands in size 

Structural variants 

»  Regions of an individual haplotype can be inverted, deleted, or 
translocated relative to the reference genome sequence 

 Most of these variants are not directly pathogenic! 



Phenotypic impacts 
Most human genomic variants have no phenotypic impacts 

Most of those that do have phenotypic impacts are either positively selected (i.e. 
they confer a reproductive advantage) or neutral 

»  Typically, they affect traits like height, facial features, hair or skin color, often 
associated with ethnic origin 

Some genomic variants have effects that are deleterious to health 

»  Most of these are recessive: their effect is observed only if both alleles are 
affected; these recessive alleles are often associated with specific ethnic 
groups 

»  Those that are dominant will either be selected against and disappear, or 
have effects that minimally impact reproductive fitness (e.g., adult cancer) 

This implies that the vast majority of alleles commonly found in the 
population do not directly cause disease 



How to assess genomic diversity? 

Methods are available to assess all three major sources of diversity: 

 SNPs, copy number variants, and structural variants 

For SNPs, many different methods have been used: 

»  Hybridization based, primarily SNP arrays 

»  Enzyme-based methods, primarily oligonucleotide ligation and RFLP 

»  Methods measuring physical properties of DNA 

For copy number variants, the main methods are hybridization based 

For structural variants, there are no universally accepted methods, but the most 

reliable ones use partial sequencing of large clones (e.g. fosmids) 

High-throughput sequencing should be able to detect all types of variants 



Genome Sequencing 



Genome Resequencing & Variant Detection 
 

»  Pros 

»  Its per base cost is cheaper than Sanger sequencing 

»  It is getting cheaper allowing for large studies to be executed 

»  It makes truly Genome-Wide analyses feasible 

»  Cons 

»  The datasets are large and require relatively large computational 

infrastructure for data storage and processing 

»  Some ambiguity in final results (but this can be overcome with 
stringent methodologies) 
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Human Reference Genome 
 

» hg19 – most commonly used 

» hg38 – the new version released at the end of 2013 
“GRCh38 is the second major release of the human reference assembly 

made by the GRC. This release affects chromosome coordinates, includes 

261 alternate loci scaffolds and corresponding alignments that provide 

chromosome context, and replaces centromere gaps with modeled 

sequence. The GRC resolved 1008 issues.” 

- http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/ 
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Variant Calling – Types of Data 

 

»  Whole Genome Sequencing (WGS) 
»  Fragment genomic DNA 

»  Sequence all the fragments 
 

»  Exome Sequencing 
»  Capture DNA pieces that are known to be transcribed (exons) using 

arrays with sequence similarities 

»  Amplify these pieces and sequence them 

»  Most known exonic regions captured, but not all 

»  Smaller dataset with concentrated information 

»  Less sequencing necessary to reach the same depth of coverage 
14 



Exome analysis 



Variant Calling – Types of Data 

 

»  Whole Genome Sequencing (WGS) 
»  Fragment genomic DNA 

»  Sequence all the fragments 
 

»  Exome Sequencing 
»  Capture DNA pieces that are known to be transcribed (exons) using 

arrays with sequence similarities 

»  Amplify these pieces and sequence them 

»  Most known exonic regions captured, but not all 

»  Smaller dataset with concentrated information 

»  Less sequencing necessary to reach the same depth of coverage 
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Variant Calling – “Coverage” & “Depth” 
 

»  Coverage – What % of the genome sequence is represented in the 

sequencing data 

»  Depth of coverage – How many times is every base in the genome 

represented (on average) 
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Variant Calling – Depth of coverage 
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Variant Calling – Depth of coverage 
 

For WGS 

»  Haploid genome size => 3.2 Giga base pairs (3.2 billion) 

»  50x coverage => ~160 Gbp 
 

For Exome Sequencing 

»  Exome size => 33 Mega base pairs (33 million bases) 

»  50x coverage => ~1.65 Gbp 

»  About 100 times smaller than WGS 

»  Depending on your method of capture, this number can vary  
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Variant Calling – Depth of coverage 
 



Sequencing Technologies 

(Illumina) 
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HiSeq 2500 Sequencing System 

50 – 600Gb 
2 – 11 days 

2 x 100bp max 

10 – 180Gb 
7 – 40 hours 

2 x 150bp max 

Smaller projects, 
quick results 

Larger projects, 
fewer runs  
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Flowcell (1 lane) 

Reads: 250nt-300nt in length 
 
Yield per run: 

  25 to 50 million paired-reads 
Applications: 

  16s rRNA 
  Sequencing of small genomes 
   (bacteria, fosmids, BACs, virus) 
  Targeted sequencing (exome capture) 
  de novo transcriptome assembly 

Turnaround time: ****FAST**** 

MiSeq v3 Sequencing System 
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Illumina Sequencing Workflow 
Fragment	  DNA	  
Repair	  ends	  
Add	  A	  overhang	  
Ligate	  adapters	  
Purify	  

	  	  Library	  Prepara;on	  1	  

	  	  Cluster	  Genera;on	   Hybridize	  to	  flow	  cell	  
Extend	  hybridized	  template	  
Perform	  bridge	  amplifica;on	  
Prepare	  flow	  cell	  for	  sequencing	  

2	  

	

	  

	  	  Sequencing	  
Perform	  sequencing	  
Generate	  base	  calls	  
	  

3	  

	

	  

	  	  Data	  Analysis	  
Images	  
Intensi;es	  
Reads	  
Alignments	  
	  

4	  
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Libraries = ds DNA ligated to “Y” adaptors 
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ACGTG 

 TGCAC 

Library from sample 1 

GGACCG 

CCTGGC 

GGTCCA 

CCAGGT 

Library from sample 3 

Computationally separated 
based on barcode sequence 
post-sequencing 

…………….. Single-read 100nt 
…………….. Paired-end 100nt 

……… 6nt 

Library from sample 2 

Illumina Sequencing Technology: 
Reads and BarCoding 
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Library	  Prepara;on	  

DNA	  
(0.1-‐5.0	  μg)	  

1	   2	   3	   7	   8	   9	  4	   5	   6	  
T	  G	  	  T	  A	  C	  G	  A	  T	  …	  

Illumina Sequencing Technology Workflow 

C 

C	  

C 
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Sequencing	  	  

Single	  molecule	  array	  

Cluster	  Growth	  

Image	  Acquisi;on	  	   Base	  Calling	  	  

5’	  

5’	  3’	  
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“Phred” quality (Q) scores 

»  Each base call is associated with a quality score (Q) 

»  Q = -10 x log10(P), where P is the probability that a base call is 

erroneous 

•  A Q score of 20 => 1:100 chance that the base is called incorrectly 

•  A Q score of 30 => 1:1000 chance … 

»  It is generally believed that the Illumina Q scores are accurate 
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R1	  

R2	  

34	  

20	  

“Phred” quality (Q) scores 
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Variant Calling – Depth of coverage 
 

For WGS 

»  Haploid genome size => 3.2 Giga base pairs (3.2 billion) 

»  50x coverage => ~160 Gbp 

»  Assuming 100 nucleotide Paired-End reads this is equivalent to 

800 million paired reads  

»  ~5 lanes of Illumina Hi-Seq per sample for WGS 
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Variant Calling – Depth of coverage 
 

For Exome Sequencing 

»  Exome size => 33 Mega base pairs (33 million bases) 

»  50x coverage => ~1.65 Gbp 

»  Assuming 100 nucleotide Paired-End reads this is equivalent to 80 

million paired reads  

»  <1 lane of Illumina Hi-Seq per sample for exome sequencing 
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Variant Calling – Depth of coverage 
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Variant Calling – Depth of coverage 
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Sensitivity is the measure of true variants 
being identified 



File Formats 

(NGS) 
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Formats associated with Variant Detection 

Input: FASTQ - Raw sequence (potentially billions of small strings) 
 
Output: VCF - A human ‘diff’ file 
 
Intermediary files:  

»  FASTA 
»  SAM/BAM 
»  Optional ones, depending on your needs: 

•  Known variants (VCF) 
•  Pedigree information (PED) 
•  Genotyping information (SnpEff database) 

35 



Formats: FASTA 

Deceptively simple format (e.g. there is no standard) 

However in general: 

»  Header line, starts with ‘>’, 

»  followed directly by an ID, 

»  … and an optional description (separated by a space) 

Files can be fairly large (genomes) 

>unique_sequence_ID My sequence is pretty cool!
ATTCATTAAAGCAGTTTATTGGCTTAATGTACATCAGTGAAATCATAAATGCTAAAAATTTATGATAAAAGAATAC!
!
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E.g. a read 

 
 

E.g. a chromosome 

>unique_sequence_ID My sequence is pretty cool!
ATTCATTAAAGCAGTTTATTGGCTTAATGTACATCAGTGAAATCATAAATGCTAAAAATTTATGATAAAAGAATAC!
!

>Group10 gi|323388978|ref|NC_007079.3| Amel_4.5, whole genome shotgun sequence!
TAATTTATATATCTATTTTTTTTATTAAAAAATTTATATTTTTGTTAAAATTTTATTTGATTAGAAATAT!
TTTTACTATTGTTCATTAATCGTTAATTAAAGATAGCACAGCACATGTAAGAATTCTAGGTCATGCGAAA!
TTAAAAATTAAAAATATTCATATTTCTATAATAATTAAATTATTGTTTTAATTTAAGTAAAAAAATTTCT!
AAGAAATCAAAAATTTGTTGTAATATTGAAACAAAATTTTGTTGTCTGCTTTTTATAGTAACTAATAAAT!
ATTTAATAAAAAATTACTTTATTTAATATTTTATAATAAATCAAATTGTCCAATTTGAAATTTATTTTAT!
CACTAAAAATATCTTTATTATAGTCAATATTTTTTGTTAGGTTTAAATAATTGTTAAAATTAGAAAATGA!

TCGATATTTTCAAATAGTACGTTTAACTAATACTTAAGTGAAAGGTAAAGCGGTTATTTAAAATATTGAT!
TTATAATATTCGTGACATAATATATTTATAAATAGATTATATATATATATATACATCAAAATATTATACG!
AGAACTAGAAAATATTACAGATGCAAAATAAATTAAATTTTGTAAATGTTACAGAATTAAAAATCGAAGT!

Formats: FASTA 
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May be ‘raw’ data (straight from seq pipeline) or processed (trimmed for 
various reasons) 

Can hold 100’s of millions of records per sample 

Files can be very large (100’s of GB) apiece 

Formats: FASTQ 

@unique_sequence_ID!

ATTCATTAAAGCAGTTTATTGGCTTAATGTACATCAGTGAAATCATAAATGCTAAAAATTTATGATAAAAGAATAC!

+!

=-(DD--DDD/DD5:*1B3&)-B6+8@+1(DDB:DD07/DB&3((+:?=8*D+DDD+B)*)B.8CDBDD4DDD@@D!

!

38 
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SAM – Sequence Alignment/Map format 

»  SAM file format stores alignment information 

»  Normally converted into BAM (text format is mostly useless for analysis) 

Specification: http://samtools.sourceforge.net/SAM1.pdf 

Contains FASTQ reads, quality information, alignment 
information, other information about samples (meta data) etc. 

Files are typically very large: Many 100’s of GB or more 

Formats: SAM/BAM 
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BAM – BGZF compressed SAM format 

»  May be unsorted, or sorted by sequence name or genome coordinates 

»  May be accompanied by an index file (.bai)  

»  Makes the alignment information easily accessible to downstream 
applications  

»  Relatively simple format makes it easy to extract specific features, e.g. 
genomic locations 

»  BAM is the compressed/binary version of SAM and is not human 
readable.  Uses a specialized compression algorithm optimized for 
indexing and record retrieval (bgzip) 

Files are typically very large: 1/5 of SAM, but still very large 

Formats: SAM/BAM 
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VCF (Variant Call Format) 

BCF – direct bgzip-compressed VCF format 

 

Specification:  

 From the 1000 Genomes Project

http://www.1000genomes.org/wiki/Analysis/Variant%20Call

%20Format/vcf-variant-call-format-version-41 

 

Formats: VCF/BCF 
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##fileformat=VCFv4.1	
##fileDate=20090805	
##source=myImputationProgramV3.1	
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta	
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>	
##phasing=partial	
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">	
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">	
##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency">	
##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">	
##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129">	
##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership">	
##FILTER=<ID=q10,Description="Quality below 10">	
##FILTER=<ID=s50,Description="Less than 50% of samples have data">	
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">	
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">	
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">	
##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">	
#CHROM POS     ID        REF    ALT     QUAL FILTER INFO                              FORMAT      NA00001        NA00002        NA00003	
20     14370   rs6054257 G      A       29   PASS   NS=3;DP=14;AF=0.5;DB;H2           GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.	
20     17330   .         T      A       3    q10    NS=3;DP=11;AF=0.017               GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3   0/0:41:3	
20     1110696 rs6040355 A      G,T     67   PASS   NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2   2/2:35:4	
20     1230237 .         T      .       47   PASS   NS=3;DP=13;AA=T                   GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2	
20     1234567 microsat1 GTC    G,GTCT  50   PASS   NS=3;DP=9;AA=G                    GT:GQ:DP    0/1:35:4       0/2:17:2       1/1:40:3	

Formats: VCF 
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QC steps to consider for  

NGS-based Variant Calling 
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QC steps 
 

»  During and after library prep 
•  Is the quality and amount of genomic DNA reasonable? 

•  Is the quality and amount of prepared library good? 

»  During sequencing and immediately after  
•  Are there too many or too few clusters?  

•  Is the sequencing proceeding as expected? 

»  Before data processing 
•  Is the data quality good? 

•  If not, can getting rid of low quality reads or bases help? 

44 



           QC - During and after library prep 
 

»  Is the quality and amount of genomic DNA 

reasonable? 
•  A 1% agarose gel can be run to check quality 

•  For estimating DNA amount, a nanodrop (spectrophotometric 

method) can often be inaccurate due to various reasons and the 

recommendation is to use the Qubit (fluorometric method) 

»  Is the quality and amount of prepared library good? 
•  Perform a Bioanalyzer run to double check the size 

•  Perform a Qubit DNA assay estimate the quantity 
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QC - During sequencing and immediately after  
 

»  Are there too many or too few clusters?  
•  Perform one cycle of sequencing to test if all 8 lanes of the flow cell 

have a good number of clusters (“Goldilocks” effect) 

•  This will impact final data quality! 

»  Is the sequencing proceeding as expected? 
•  Monitor the stats on the monitor of the machine every few hours to 

ensure there are no issues with the runs 
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QC - During sequencing and immediately after  
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QC - Before data processing 
 

»  FastQC to check quality scores and other metrics of the FASTQ 

data file 

»  Trimmomatic to remove low quality bases from either end and 

choose to keep only reads with enough nucleotides remaining 

»  Trimmomatic to remove any leftover adaptor sequences 

»  FastQC to check the metrics after trimming 
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QC - Before data processing 
 

Before quality trimming After quality trimming 



Variant Calling Data Processing Steps 
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Calling variants with the GATK 
 

»  GATK  

“The Genome Analysis Toolkit or GATK is a software package developed at the 

Broad Institute to analyse next-generation resequencing data. The toolkit offers a 

wide variety of tools, with a primary focus on variant discovery and 

genotyping as well as strong emphasis on data quality assurance. Its robust 

architecture, powerful processing engine and high-performance computing 

features make it capable of taking on projects of any size.” 

- http://www.broadinstitute.org/gatk/  
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Calling variants with the GATK 
 

 

»  GATK provides a good infrastructure and a guide to best practices to 

be employed for variant calling 

»  It utilizes several open-source tools at various steps, along with GATK-

specific tools and scripts 

»  Can use both exome and WGS data for variant calling 

»  GATK takes advantage of the concept of parallel computing to speed 

up the pipeline 
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Calling variants with the GATK 
Parallelism 
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Example of a Node on a cluster (UNIX) 
•  1 Dell PowerEdge R620 Node 

•  24 Intel Xeon E5-2697 @ 2.7GHz CPU Cores  

•  384 Giga Bytes of RAM 
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Calling variants with the GATK 
Parallelism 



Calling variants with the GATK 
 

 

»  GATK provides a good infrastructure and a guide to best practices to 

be employed for variant calling 

»  It utilizes several open-source tools at various steps, along with GATK-

specific tools and scripts 

»  Can use both exome and WGS data for variant calling 

»  GATK takes advantage of the concept of parallel computing to speed 

up the pipeline 

•  You can implement this type of a set up outside of the GATK constraints 
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Calling variants with the GATK 
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Calling variants with the GATK 
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»  Mapping or Aligning raw reads to reference 

genome is usually done with BWA (Burrows-

Wheeler Aligner) 

»  Duplicates are marked using Picard 

»  Very important steps that set up the quality of the 

variant calling 

»  Tools used for these steps are external to GATK 

59 

Calling variants with the GATK 



Calling variants with the GATK 
Mapping 
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»  Theoretically this is a simple step to determine where the read 

matches the reference genome 

»  But, there are several issues to be considered in practice 
•  Mismatches due to a variant or a sequencing error 

•  A read mapping to more than one location (repeats) 

•  Mapping Quality of the read depends on these factors 

»  The FASTQ files are often “chunked” into smaller files for this step, 

and remerged after alignment 
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Calling variants with the GATK 
Mapping 



Calling variants with the GATK 
Marking duplicates (de-duplicating) 

(FP=False	  posi;ve)	  
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Calling variants with the GATK 
 

Sort 

De-duplicate 

Add read group 
information 
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»  These steps are computationally expensive, and 

data are usually split into smaller “chunks” prior to 

mapping and marking duplicates. 

»  If multiple samples are being processed, these 

steps are performed separately for each sample 

»  These steps set up the stage for good quality calls 

•  All later steps assume that reads are placed in the right 

location and represent that region of the genome 

•  Duplicates originate mostly from DNA prep methods and 

cause biases that skew variant calling results 
64 

Calling variants with the GATK 



There are 2 steps to the realignment process: 

1.  Determining (small) suspicious intervals which 

are likely in need of realignment 

2.  Running the re-aligner over those intervals 

Can use known sites to aid in the realignment 

§  All samples can be merged together and then separated by 

chromosome and data for each chromosome can be processed 

separately from this point on 

Calling variants with the GATK 
Indel Realignment 

65 



Before realignment After realignment 
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Calling variants with the GATK 
Indel Realignment 



Before realignment After realignment 
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Calling variants with the GATK 
Indel Realignment 
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Calling variants with the GATK 
Indel Realignment 



Calling variants with the GATK 
Base Recalibration 

»  Start with reads aligned to reference genome (.bam 
file) 

»  Estimate the likelihood of a biased quality score 

»  Following criteria are considered for estimating 
bias: 
•  Reported quality score 

•  Machine cycle on sequencer 

•  Dinucleotide context 

•  Down‐weighting or remove duplicate clones 

»  Remove the estimated bias 69 



Calling variants with the GATK 
Base Recalibration 
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Calling variants with the GATK 
Base Recalibration 

The step removes and systematic biases the creep in during data 
generation and the previous data processing steps 
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Calling variants with the GATK 
Reduce Reads Compression 

»  Reduce the size of the BAM file by removing 
non-essential information 

»  Distinguish between consensus and variable 
regions, and remove consensus information 

»  Down-sample coverage in variable regions 

»  A set of samples are co-reduced to ensure 
consistency (and hence, effective comparisons) 
when working with multiple samples 
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Calling variants with the GATK 
Reduce Reads Compression 
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Calling variants with the GATK 
Reduce Reads Compression 
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Calling variants with the GATK 
Calling Variants (finally)!! 
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Calling variants with the GATK 
Calling Variants 

»  Discovery of real variants buried in the noise 

»  Several steps have been taken to reduce the 

noise with both SNPs and indels 

»  The BAM files going into this portion of the 

pipeline are “cleaner” and reduced  

§  All samples can be merged together and then separated by 

chromosome and data for each chromosome can be processed 

separately from this point on 
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Calling variants with the GATK 
Calling Variants 
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Calling variants with the GATK 

Unified Genotyper (UG) - 

»  UG calls SNPs and indels separately by considering each variant 

locus independently 

»  Currently, this program runs faster than HaplotypeCaller 

»  UG is going to be phased out in favor of the HaplotypeCaller 
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Calling variants with the GATK 

HaplotypeCaller - 

»  Call SNPs, indels, and some SVs simultaneously by performing a 

local de-novo assembly (deBruijn  graph-based assembly) 
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Calling variants with the GATK 
HaplotypeCaller 

80 
Schatz M C et al. Genome Res. 2010;20:1165-1173 



Calling variants with the GATK 
HaplotypeCaller 
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Short read 
alignment 

Assembled data 
re-alignment 



Calling variants with the GATK 
Variant Quality Score Recalibration 

»  The variant calling process is relatively 

permissive, and produces many false positives 

»  The variant recalibration workflow compares 

properties of novel predicted variants to those of 

variants known to exist in the population (from 

dbSNP database) 

»  Basically, this step filters out likely false 

positives producing a high-quality set 
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Calling variants with the GATK 
Variant Quality Score Recalibration 
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Calling variants with the GATK 
Variant Quality Score Recalibration 
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The 1000 Genomes Project 
»  http://www.1000genomes.org/ 
»  SNPs and structural variants 
»  genomes of about 2500 unidentified people from about 25 populations around the world will 

be sequenced using NGS technologies 
HapMap 

»  http://hapmap.ncbi.nlm.nih.gov/ 
»  identify and catalog genetic similarities and differences 

dbSNP 
»  http://www.ncbi.nlm.nih.gov/snp/ 
»  Database of SNPs and multiple small-scale variations that include indels, microsatellites, 

and non-polymorphic variants 
COSMIC  

»  http://www.sanger.ac.uk/genetics/CGP/cosmic/ 
»  Catalog of Somatic Mutations in Cancer 

TCGA  
»  http://cancergenome.nih.gov/ 
»  The Cancer Genome Atlas researchers are mapping the genetic changes in 20 selected 

cancers 85 

Catalogs of human genetic variation 
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Variant Calling Data Processing Steps 



Calling variants with the GATK 
Genotype Refinement 

»  Improve the genotype assignments and 

inferring haplotypes for your samples 

»  Infer phasing information based on population 

analyses using familial information or random 

population information  

»  Critical in population genetics studies to 

determine haplotype structure 
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Calling variants with the GATK 
Genotype Refinement 
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Calling variants with the GATK 
Functional Annotation 

»  Which gene is affected? 

»  Is the change in a coding or non-coding region? 

»  Does the mutation create synonymous or a non-

synonymous change? 
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Calling variants with the GATK 
Functional Annotation 
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SnpEff annotates and predicts the effects of variants on 
genes (such as amino acid changes). 

 
SnpEff annotation gives the following information: 

Is the variant genic or intergenic, exonic or intronic, in a UTR? 
Change caused by variant is synonymous or non-synonymous? 



Calling variants with the GATK 
Functional Annotation 
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Calling variants with the GATK 
Variant Evaluation 

• When compared to known variant databases how 
do the basic statistics compare? 

• Do any of the previous steps need revisiting to 
make the comparisons better? 

• How many variants are present in total? 

• How many of them are common between the 
samples or groups? 

• How many of them are unique between the 
samples or groups? 

It is very important to compare apples to apples at 
this step: 

•  Compare to a matched dataset 
•  Pick the database or a subset of a database 

derived from the population closest to your 
population of interest 
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Variant Calling Data Processing Steps 



A complex puzzle… 
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Variant Calling – Interpretation 
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»  Fundamental problem in biology: how does genotype inform phenotype, 
and what other factors (e.g., environmental, epigenetic) are involved? 

»  For some phenotypes, e.g., those linked to ethnic differences, or highly 

penetrant Mendelian traits, we can predict phenotype from genotype 

quite accurately 

»  For many “complex” traits where we know that there is a strong 
inherited component (e.g., from twin and family studies), we still have a 

ways to go 

»  Two common approaches: 
»  Genome-wide association studies (GWAS) 

»  Integrated analyses 



GWAS – basic principles 

(A)  In a case / control study, genotypes are 
determined for all cases and controls  

(B)  For each allelic variant, the distribution of 
alleles between cases and control 
groups is measured, and deviation from 
a random distribution calculated  

(C) The Χ2 p-values and positions in the 
genome for each of the measured loci 
are displayed in a Manhattan plot. The 
Figure shows two genomic regions 
enriched for variants with highly 
significant distribution biases that 
putatively contain causal variants for the 
trait being analyzed. 
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GWAS – extension 

Detection of epistatic interactions: 

»  Assumption is that phenotype is influenced by more than one allelic 
variant, and that the effects are synergistic (more than additive) 

»  Ideally involves the calculation of the effect sizes of all combinations 
of observed alleles, and a comparison to their individual effects 

»  Computationally very challenging depending on the number of 
variants 
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Integrated Analyses 

Source:	  The	  Cancer	  Genome	  Atlas,	  TCGA	  
98 
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Genome sequencing and Variant Calling 
 

»  Introduction to using NGS for Variant Detection 

»  Sequencing Technologies, specifically Illumina 

»  File Formats, FASTQ, SAM, BAM, vcf, bcf 

»  QC steps 

»  Variant Calling (data processing) 

Tea Break 

»  Computational Requirements 

»  Data Storage 

»  Processing Capacity 

Brief Introduction to using NGS for microbiome analysis 



Computational Requirements 
 

Data Storage Requirements 

Processing Capacity Required 
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Input files Output files Cumulative Size 

PE FASTQ 
~10-15X coverage ~100GB 

PE FASTQ SAM ~300GB 

Large SAM  
Sorted BAM, de-dupped 

BAM, BAM with read 
groups added 

~450GB 

Large BAM Realigned BAM ~600GB 

Realigned BAM BAM with recalibrated 
quality ~750GB 

BAM with 
recalibrated quality Reduced BAM ~810GB 

Data Storage Requirements 
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Input files Output files Cumulative Size 

Reduced BAM Small vcf files  
(text files) ~820GB 

Small vcf files  
(text files) 

More small vcf files  
(text files) ~825GB 

Data Storage Requirements 
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Data Storage Requirements 

Grand total for the first 2 parts of the pipeline: > 0.8 TB 

Oh wait, that’s per sample for 15x coverage!! 
 

And that’s only the first phase of the pipeline and it is a middle-case 

scenario for WGS data!! 
 

50x Exome = 30GB raw FASTQ + everything else 

50x WGS = 350GB raw FASTQ + everything else 
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Data Storage Requirements 

»  Storage and data backup plans should be ready before you get the raw 

FASTQ data from the sequencing center 

»  Maintain a good documentation of steps as well as data organization; this 

is especially crucial for a large population analysis 

»  Remove any files that are easily re-creatable; e.g. once you have the 

BAM file that has been realigned and recalibrated for quality scores, you 

can maybe afford to lose the 2 previous versions of the BAM files (I’d save 

the original BAM) 

»  Compress any “compressable” files, e.g. vcf to bcf or SAM to BAM 

»  Compress (tar) everything prior to archiving (long-term storage) 
105 



Computational Requirements 
 

Data Storage Requirements 

Processing Capacity Required 
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Parallelism 
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Parallelism 
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»  Some software can be run in a “multi-threaded” mode, wherein the 

parallelization is built in (multiple cores) 

»  Parallelization when feasible is great, but this is not always the 

case. For some steps there is no efficient way to parallelize… 

»  There are ways external to the software that can be used to 

optimize efficiency and are not mutually exclusive 

•  Example 1 - align smaller chunks of the fastq files to the genome 

simultaneously 

•  Example 2 - separate out all the aligned data by chromosome, and run 

the downstream analysis per chromosome 



Step Hours on 1 core 
50x WGS 

Hours on 1 core 
50x Exome 

QC 10 0.5 

Alignment  
(parallelizable) 320 

55 to 111 
(depending on the aligner used) 

Sorting, de-dupping, read group addition  
(partly parallelizable) 35 2 

Indel realignment + Recalibration 
(Forcibly parallelizable, by separating into 

chromosomes) 
69 6 

Variant Calling (UG)  
(Forcibly parallelizable, by separating into 

chromosomes) 
40 5 

Processing Requirements 
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Step Hours on 1 core 
50x WGS 

Hours on 1 core 
50x Exome 

QC 10 0.5 

Alignment  
(parallelizable) 320 

55 to 111 
(depending on the aligner used) 

Sorting, de-dupping, read group addition  
(partly parallelizable) 35 2 

Indel realignment + Recalibration 
(Forcibly parallelizable, by separating into 

chromosomes) 
69 6 

Variant Calling (UG)  
(Forcibly parallelizable, by separating into 

chromosomes) 
40 5 

Processing Requirements 
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When using GATK or a similar pipeline and making use of parallelization 
for efficient processing, the memory requirements are fairly low, 10 GB per 

process is deemed to be enough. 



A brief introduction to using NGS for 

microbiome analysis 
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Microbiome (in the human context) 

»  For every single human cell there are at least 10 microbial cells in or on our 

bodies making up ~500 grams of your body weight 

»  Joshua Lederberg coined the term “microbiome, to signify the ecological 

community of commensal, symbiotic, and pathogenic microorganisms that 

literally share our body space” (Scientist 2001) 

»  Prior to high-throughput sequencing, microbiome analysis was restricted to 

microorganisms that could be cultured in the lab 

»  Sampling has been performed from various parts of the human body, on the 

surface and from within the body cavity 
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Microbiome (in the human context) (contd.) 

Why study the microbiome? 

»  To understand the contribution of this large population of cells on the 

human body  

»  To study if and how it impacts disease states 

»  To assess the impact of environmental factors on the microbiota and 

downstream phenotypes 
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Methods to study the Microbiome 

To study a specific microbiome (e.g. intestinal, vaginal, feet etc.), you can 

isolate and study the DNA or the RNA from the environmental samples 

»  DNA-based methods 

•  Taxonomic diversity by sequencing variable 16S regions 

•  Shotgun sequencing of the whole metagenome 

–  Functional information, what genes are enriched in the microbiome? 

–  Taxonomic diversity 

»  RNA-based method 

•  Shotgun sequencing of the whole metatranscriptome 

–  More direct functional information about gene expression 
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Two major DNA-based methods 

Morgan XC, Huttenhower C (2012) 
Chapter 12: Human Microbiome Analysis. 

PLoS Comput Biol 8(12) 



Two major DNA-based methods 

To study the DNA isolated from environmental samples to assess the 
diversity of microbial community in that environment 

1.  Isolate and sequence the DNA that encodes 16S ribosomal RNA 
•  16S ribosomal RNA (DNA) is very well conserved among bacterial and archaeal 

species, with small sections of “hypervariable” regions (e.g. V4, V6 etc.) 

•  Because of the highly conserved areas outside of these hypervariable regions, 
common or universal primers can be designed to amplify the variable DNA 

•  The sequence of the hypervariable regions can be utilized to characterize the 
sequence into taxonomic groups 

•  Thus the basic output of such an analysis is OTUs or Operational Taxonomic Units 
or phylotypes 

•  Well-developed methods available for this analysis 116 
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16S-based approach 

Morgan XC, Huttenhower C (2012) 
Chapter 12: Human Microbiome Analysis. 

PLoS Comput Biol 8(12) 



To study the DNA isolated from environmental samples to assess the 
diversity of microbial community in that environment 

2.  Shotgun sequencing of the whole metagenome 

•  True metagenomics, since you are potentially looking at the whole genomes of the 
microbial community in the sample 

•  This method also enables taxonomic diversity analysis 

•  Often environmental constraints result in selective metabolic processes being 
enriched in a given environment and this method can enable gathering functional 
information of this nature 

•  Methods are still being developed and there are many opinions about right and 
wrong 118 

Two major DNA-based methods 
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Shotgun sequencing – metagenomics 

Morgan XC, Huttenhower C (2012) 
Chapter 12: Human Microbiome Analysis. 

PLoS Comput Biol 8(12) 

»  Filter out host DNA by alignment to 

the host genome [lots of low-memory processors] 

»  2 alternatives for filtered short reads 
1.  Align the remaining short-reads to various 

databases to identify taxonomic and 

genic information [lots of low-memory 

processors] 

2.  Alternatively, assemble the short reads 

into longer pieces or contigs before 

aligning to the databases. [at least one high-

memory processor + lots of low-memory processors] 



»  Broad taxonomic classifications can be made with both the methods 

»  Diversity plots of OTU composition/profiles provide key insight- 
•  Alpha or within-sample diversity 

•  Beta or between-sample diversity 

»  The whole-genome shotgun approach will also provide genic, i.e. 

functional information (metabolic process enrichment, etc.) 
120 

Two major DNA-based methods 



To study the transcriptome (RNA) isolated from environmental samples. 
Shotgun sequencing of the metatranscriptome 

»  How to sequence the RNA component of a sample? 
•  Treat the sample extremely carefully to prevent degradation (GIGO) 

•  Library preparation involves isolating the RNA you are interested in (removing anything that 

looks like ribosomal RNA) 

•  Convert the RNA to DNA using reverse transcription 

•  Proceed with making a dsDNA library from the complementary DNA (cDNA) 

•  Sequence as usual 
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Metatranscriptomics 



To study the transcriptome (RNA) isolated from environmental samples. 
Shotgun sequencing of the metatranscriptome 

»  Filter out host RNA by alignment to the host genome  

»  Filter out any remaining rRNA by alignment to databases like SILVA 

»  2 alternatives for filtered short reads (similar to DNA) 

1.  Align the remaining short-reads to various databases to identify genic information  

2.  Alternatively, assemble the short reads into longer pieces or contigs before aligning 

to the genic databases.  

»  Deduce the role of the microbiome based on the transcripts expressed 
122 

Metatranscriptomics 



Methods to study the Microbiome 

To study a specific microbiome (e.g. intestinal, vaginal, feet etc.), you can 

isolate and study the DNA or the RNA from the environmental samples 

»  DNA-based methods 

•  Taxonomic diversity by sequencing variable 16S regions 

•  Shotgun sequencing of the whole metagenome 

–  Functional information, what genes are enriched in the microbiome? 

–  Taxonomic diversity 

»  RNA-based method 

•  Shotgun sequencing of the whole metatranscriptome 

–  More direct functional information about gene expression 
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