



H3ABioNet Data Management Workshop Shaun Aron June 2014

# Post GWAS visualisation and analysis

Introduction to GWAS 2014 - Shaun Aron

#### **Post GWAS analysis**

What do you do once you have identified a set of SNPs associated with a particular phenotype of interest?



Introduction to GWAS 2014 - Shaun Aron

# **Post GWAS analysis**

- If you're lucky...
  - Variants are in a gene previously linked to your phenotype/disease
  - Celebrate....not just yet...
  - Explore further implications of the variant
  - Replicate then celebrate!
- If you're not so lucky
  - Look for approaches to interrogate and prioritise associated SNPs for further analysis
  - Look for alternative approaches to analyse GWAS data

#### **Post GWAS visualisation**

- Q-Q plots
- Manhattan plots
- Evoker

Introduction to GWAS 2014 - Shaun Aron

# Q-Q plots

A Q-Q plot is a probability plot, which is a graphical method for comparing two probability distributions by plotting their quantiles against each other.
Essentially a GWAS QQ plot aims to plot the quantile distribution of observed p-values (y-axis) vs the quantile distribution

of expected p-values (x-

axis)





A normal Q–Q plot comparing sample quantile data on the vertical axis to a standard normal distribution on the horizontal axis.

The second distribution is often theoretical

#### **QQ plots in GWAS**



#### **Visualizing Associations - Manhattan plot**

To generate Manhattan plot you can use several available R scripts to plot your p-values. E.g qqman in R

Each point is a SNP laid out across the human chromosomes from left to right, and the heights correspond to the strength of the association to disease.

Red line: Standard P-value cutoff Blue line : Suggestive P value cutoff



Chromosome

#### Reviewing Cluster plots for Predicted Associations - EVOKER



- Evoker is a a fast, user-friendly and interactive interface tool for visualizing genotype cluster plots, and provides a solution to the computational and storage problems related to working with large datasets.
- Evoker requires four data file types, which provide information about samples, SNPs, genotype calls and X/Y allelic intensities.
- Plots for particular markers can be quickly called up by searching on the marker name, along with summary statistics on minor allele frequency, genotyping call rate and Hardy–Weinberg equilibrium *P*-value

https://www.sanger.ac.uk/resources/software/evoker/

#### Evoker: Cluster plot chromosome 2 best SNP



## **PostGWAS SNP prioritisation**

Introduction to GWAS 2014 - Shaun Aron

# Post GWAS approaches

- Functional annotation of SNPs
  - Functional annotation of associated SNPs
- Pathway analysis
  - Pathways associated with genes in which associated SNPs are identified
- Genome-wide complex trait analysis (GCTA)
  - Alternative approach to typical GWAS

#### **Functional annotation of SNPs**

- If you have a few associated SNPs, functional annotation can be done manually
  - Extract information from genome browsers such and Ensembl or UCSC
- If you have a large number of associated SNPs there are several tools that do automated annotation and prioritisation

#### **Functional annotation of SNPs**

- ANNOVAR ANNotation of VARiants
- Functional annotation pipeline for variants from various organisms
- Command line version and web service called wANNOVAR

#### WANNOVAR

- Given a list of SNPs:
  - Annotates the functional effect on genes for nonsynonymous SNPs
  - Calculate the predicted functional effect using tools such as SIFT, PolyPhen2, MutationTaster
  - Retrieve allele frequencies in public databases (1000 genomes)
  - Uses a variant reduction process to identify a subset of potentially deleterious variants (command line version)

#### WANNOVAR

| Column Name                                       | Explanation                                                                                                     |  |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| Func                                              | Variant function (exonic, intronic, intergenic, UTR, etc)                                                       |  |
| Gene                                              | Gene Name. By default, RefSeq gene definition is used, but users can choose from other gene definition systems. |  |
| ExonicFunc                                        | Exonic variant function (non-synonymous, synonymous, etc)                                                       |  |
| AAChange                                          | Amino acid changes                                                                                              |  |
| Conserved                                         | Region-level phastCons LOD scores                                                                               |  |
| SegDup                                            | Sequence identity score for the segmental duplication region where variant is located in                        |  |
| ESP5400 ALL                                       | Alternative allele frequency in all subjects in the NHLBI-ESP project with 5400 exomes                          |  |
| 1000g2011may ALL(hg19)                            | Alternative allele frequency data in 1000 Genomes Project                                                       |  |
| 1000g2010jul(hg18,3datasets: ceu,<br>yri, jptchb) | Same as above                                                                                                   |  |
| dbSNP                                             | by default, dbSNP135 for hg19, dbSNP132 for hg18. Users can select a different dbSNP version.                   |  |
| AVSIFT                                            | Whole-exome SIFT scores for non-synonymous variants                                                             |  |
| LJB PhyloP                                        | Whole-exome PhyloP scores                                                                                       |  |
| LJB SIFT                                          | Whole-exome LJBSIFT (1-SIFT) scores                                                                             |  |
| LJB PolyPhen2                                     | Whole-exome PolyPhen version 2 scores                                                                           |  |
| LJB LRT                                           | Whole-exome LRT scores                                                                                          |  |
| LRT MutationTaster                                | Whole-exome MutationTaster scores                                                                               |  |
| LJB GERP++                                        | Whole-exome GERP++ scores                                                                                       |  |

#### WANNOVAR

| Func     | Gene    | ExonicFunc        | AAChange                    |
|----------|---------|-------------------|-----------------------------|
|          |         |                   |                             |
| exonic   | NOC2L   | synonymous SNV    | NM_015658:c.C1654T:p.L552L  |
| exonic   | NOC2L   | synonymous SNV    | NM_015658:c.C657T:p.L219L   |
| intronic | PLEKHN1 |                   |                             |
| exonic   | AGRN    | nonsynonymous SNV | NM_198576:c.G5125C:p.G1709R |
| exonic   | TTLL10  | synonymous SNV    | NM_153254:c.C120T:p.P40P    |
| exonic   | TTLL10  | nonsynonymous SNV | NM_153254:c.C884G:p.P295R   |
| exonic   | B3GALT6 | nonsynonymous SNV | NM_080605:c.C16T:p.R6W      |
| exonic   | B3GALT6 | nonsynonymous SNV | NM_080605:c.A193G:p.S65G    |
| exonic   | B3GALT6 | nonsynonymous SNV | NM_080605:c.C200T:p.P67L    |
| exonic   | B3GALT6 | nonsynonymous SNV | NM_080605:c.G466A:p.D156N   |
| exonic   | B3GALT6 | nonsynonymous SNV | NM_080605:c.G619C:p.D207H   |
| exonic   | B3GALT6 | nonsynonymous SNV | NM_080605:c.G649A:p.G217S   |
| exonic   | B3GALT6 | nonsynonymous SNV | NM_080605:c.C694T:p.R232C   |
| exonic   | B3GALT6 | nonsynonymous SNV | NM_080605:c.T925A:p.S309T   |
| exonic   | PUSL1   | nonsynonymous SNV | NM_153339:c.C517A:p.L173I   |
| splicing | CPSF3L  |                   |                             |

#### Additional variant annotation tools

#### RegulomeDB

- Include annotations for non-coding regions
- Includes data from ENCODE project
- TFBS, DNase I Hypersensitive sites
- Variant Effect Predictor
  - User friendly interface
- Ensembl Perl API or BioMart



Introduction to GWAS 2014 - Shaun Aron



- Based on the premise that:
  - Most GWAS-implicated common alleles exhibit modest effect sizes
  - Genes function within biological pathways and interact with biological networks
  - Jointly may affect the risk of a complex disease
  - Is a particular pathway "enriched" with your associated SNPs/genes compared to all pathways?

- Two main approaches
  - Candidate pathway analysis
    - Pre-select pathways linked to phenotype
    - Assess enrichment in these pathways only
  - Genome-wide pathway analysis
    - Interrogate enrichment in all pathways

- Earlier analysis methods were based on gene lists and not variants
  - Only assess variants found within genes or within close proximity to a gene
  - Imputation to increase gene coverage
- More recent methods have been developed for GWAS analysis
  - Raw genotype data
  - List of SNPs and associated P-values

- Pathway analysis tools adapted for GWAS:
  - Most tools utilise one association signal per gene
  - GWAS include multiple signals per gene in some cases
  - Newer methods correct for this occurrence based on LD and P-values used as the input data

- Active area of development
- Most tools differ in the method used to calculate enrichment and pathway databases used
- Pathway-enrichment tools
  - GRAIL, MAGENTA, DAVID, INRICH, ALIGATOR, WebGestalt, GWAS<sub>3</sub>D, Ingenuity Pathway Analysis (IPA)

# **Alternative approach to GWAS**

Genome-Wide Complex Trait Analysis GCTA

Introduction to GWAS 2014 - Shaun Aron

# GWAS story so far...

- GWAS studies have uncovered hundreds of SNPs significantly associated with complex traits
- Yet for any one trait these SNPs account for only a small fraction of the genetic variation
- GWAS tests statistical association of a single SNP with trait/disease
- Can only account for a small percentage of the heritability

Introduction to GWAS 2014 - Shaun Aron

## **Two possible explanations**

- Causal variants each explain such a small amount of variation (small effect size) that their effects fail to reach stringent GWAS significance levels
- Causal variants are not in complete LD with the SNPs that have been genotyped

# **Heritability estimates**

- Twin and family studies have investigated the genetic and environmental origins of individual differences in various traits
  - The extent to which genetic variance can account for observed or phenotypic variance.
  - Estimates of genetic heritability for various traits have been determined e.g. height, weight, cognitive ability, BMI etc.

# **Missing heritability**

- Current associated SNPs only explain a small percentage of the estimated heritability in most traits/diseases
- Where is the "missing heritability"?

# **Alternative approach**

- Genome-wide Complex Trait Analysis (GCTA)
  - Provide an estimate of heritability using genomewide data from unrelated samples
- Premise is based on the concept of traditional heritability studies in families and twins
- Use all SNPs together in unrelated individuals to estimate the amount of genetic variance explained by all the SNPs

#### GCTA

- GCTA does not identify specific genes or SNPs associated with a trait
  - Uses chance similarity across genome-wide SNP data to predict phenotypic variance on a pairwise basis in a large sample of unrelated individuals
  - This yields a measure of the proportion of phenotypic variance explained by all SNPs in a GWAS dataset for the associated trait

#### GCTA

- If there is a significantly high amount of variance, then this shows that the phenotype variation of the trait of interest is likely due to common variants in the data with small effect size
- Caveat of GCTA approach Requires fairly large sample size for an accurately powered result (>5000)

#### **Tools - Links**

- wANNOVAR
  - <u>http://wannovar2.usc.edu/</u>
- Evoker
  - https://www.sanger.ac.uk/resources/software/evoker/
- Regulome DB
  - <u>http://regulome.stanford.edu/</u>
- Variant effect predictor
  - http://www.ensembl.org/info/docs/tools/vep/index.html
- DAVID
  - <u>http://david.abcc.ncifcrf.gov/</u>
- INRICH
  - <u>http://atgu.mgh.harvard.edu/inrich/</u>
- WebGestalt
  - <u>http://bioinfo.vanderbilt.edu/webgestalt/</u>
- GWAS<sub>3</sub>D
  - <u>http://jjwanglab.org/gwas3d</u>
- GCTA
  - <u>http://www.complextraitgenomics.com/software/gcta/</u>
- qqman R package
  - <u>https://github.com/stephenturner/qqman</u>