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Session 1 (9:30 - 12:30, 3h) 

Bioinformatic tools for Functional Enrichment Analysis (FEA) 
	  
	  

Session 2 (13:30 - 16:30, 3h) 
Construction of gene functional networks 

	  

DAY2 
Session 3 (9:30 - 12:30, 3h) 
Protein interaction networks 

	  
	  

Session 4 (13:30 - 16:30, 3h) 
Construction and analysis of gene/protein networks 
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Session 3 (9:30 - 12:30, 3h) 
Protein interaction networks 

Session 4 (13:30 - 16:30, 3h) 
Construction and analysis of gene/protein networks 

 
 
 
 
 

- From gene expression signatures to gene coexpression networks 
 

- Definition and properties of protein interaction networks 
 

- Visualize and analyse biomolecular networks in Cytoscape 
 

- Using on-line tools to build gene/protein networks: APID, STRING, 
GeneMANIA, PSICQUIC 

 

- Network medicine: proteins and drugs interactions (STITCH) 
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Networks & Pathways 
Comparison and combination of these type of complex data 

genes/proteins in networks 
and 

genes/proteins in pathways 
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From  Barabasi et al. (2004) 
Nature Reviews Genetics 5, 101-113. 
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From  Barabasi et al. (2011) 
Nature Reviews Genetics 12, 56-68. 
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GENOME 
TRANSCRIPTOME 

	  

genes/RNAs 
actions & relations 
	  
	  
	  

PROTEOME 
	  

proteins 
actions & relations 

	  
	  

METABOLOME 
INTERACTOME 

	  

structural, metabolic 
or signaling 

(molecular interactions) 

protein-ligand 
actions & 
relations 

Citrate Cycle 7 

Biomolecular 
complexity of 
living systems 



genome phenome 

expression track 
activation track 

	  

stable 
legacy 

expression track 
activation track 

	  

facing 
reality 

Omics era: unraveling biological complexity 
the paradox of the "genome alone" 
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genome phenome 

expression track 
activation track 

	  

stable 
legacy 

expression track 
activation track 

	  

facing 
reality 

Omics era: unraveling biological complexity 
the paradox of the "genome alone" 

genome living system 
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Organism Genome 
Genes 
	  

3.000 

Genome Factor 

Bacteria 
x2 

Yeast 6.000 
x3 x12 

Worm 18.000 
x2 

Human  36.000 

From the mere 
genome numbers 
HUMAN 
is only about 
12 times 
BACTERIA 

BIOLOGY includes two other key factors: 
➔ Cellular Factor 
1 bacteria is 1 cell 
1 human is 10 9  cells (and more than 300 cell-types) 
➔ Relational Factor 
By interaction and relations the number of possible 

Genomes … 
Is there a simple “genome factor”? 

outputs grows exponentially 
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genome phenome interactome 

facing 
reality 

+ = 

expression track 
active track 

expression track 
active track 

stable 
legacy 

Omics era: unraveling biological complexity 
proteins constitute the keystones of the cellular machinery 

genome cellular machinery living system 
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working-moving 
machinery 

genes proteins 



genome phenome interactome 
	  
	  
	  
	  
	  
	  
	  
	  
	  

expression track  expression track 
active track  active track 

	  

working-moving 
machinery 

+ = 

Omics era: unraveling biological complexity 
interactions (gene2gene, prot2prot) ... cellular machinery dynamics 

genome cellular machinery living system 
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genome phenome interactome 
	  
	  
	  
	  
	  
	  
	  
	  
	  

expression track  expression track 
active track  active track 

	  

working-moving 
machinery 

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

+  = 

genome molecular interactome living system 

Omics era: unraveling biological complexity 
interactome ... network of interacting proteins 

Babu et al. (2012) Nature 



Session 3 (9:30 - 12:30, 3h) 
Protein interaction networks 

Session 4 (13:30 - 16:30, 3h) 
Construction and analysis of gene/protein networks = biomolecular networks 
	  
	  
	  
	  
	  

- From gene expression signatures to gene coexpression networks 
	  

- Definition and properties of protein interaction networks 
	  

- Visualize and analyse biomolecular networks in Cytoscape 
	  

- Using on-line tools to build gene/protein networks: APID, STRING, 
GeneMANIA, PSICQUIC 

	  

- Network medicine: proteins and drugs interactions (STITCH) 
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Javier De Las Rivas - CiC (USAL/CSIC) - 2015  19 From  Zhu et al. (2007) Genes Dev. 

Zhu et al. (2007) Genes Dev. 
How can we characterize 
biomolecular networks 
and measure parameters 
that allow to understand the 
role of different nodes & 
edges in a given network ? 
(graph & network theory) 

Omics era: unraveling biological complexity 
mapping biological networks 



Networks 
Two major types of networks derived from experimental data 
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Two major types of networks derived from large-scale omic data 
	  
	  
1 .– Gene Coexpression Networks: ggcoe 
derived from gene expression profiling and transcriptomic studies 
	  
	  

2 .– Protein-Protein Interaction Networks: ppi 
derived from proteomic studies 



The ggcoe and ppi networks are 
complex biomolecular networks 
	  
	  
	  
Biomolecular networks 
are scale-free 
	  
	  

A scale-free network has 
more high-degree 
nodes and a power-law 
degree distribution, which 
leads to a straight line 
when plotting the total 
number of nodes with 
a particular degree versus 
that degree in log-log 
scales 

Omics era: unraveling biological complexity 
mapping biological networks 

From  Zhu et al. (2007) Genes Dev. Javier De Las Rivas - CiC (USAL/CSIC) - 2015  21 



mapping biological networks 
	  

Biomolecular networks are scale-free: A scale-free network has more high- 
degree nodes and a power-law degree distribution, which leads to a straight 
line when plotting the total number of nodes with a particular degree versus 
that degree in log-log scales. 

Omics era: unraveling biological complexity 

From  Seebacher & Gavin (2011) Cell Javier De Las Rivas - CiC (USAL/CSIC) - 2015  22 



Biological  networks  derived  from  PPIs  are  not  randomly  organized  but  rather 
have a scale-free format, containing a small number of nodes (hubs) with many 
connections (Barabasi and Oltvai 2004). 
	  
	  

This   organization   was   originally   discovered   in   World   Wide   Web   (www) 
interactions and later found to exist in biological networks (Barabasi and Albert 1999; 
Jeong et al. 2000, 2001; Guelzim et al. 2002; Tong et al. 2004). 
	  
	  

Compared with a bell-shaped degree distribution in random networks, scale-free 
networks have a typical power law distribution: a fat-tailed distribution in which 
there are vertices with high degrees termed hubs. The advantage of this type of 
organization is that the system is more robust: random loss of individual non-hub 
vertices is less disruptive in scale-free networks than random networks. 
	  

	  

Network  topology  plays  a  vital  role  in  understanding  network  architecture  and 
performance.  It  is  important  to  know  the  most  important  and  commonly  used 
topological parameters that can be calculated in a network. 

Omics era: unraveling biological complexity 
mapping biological networks 

From  Zhu et al. (2007) Genes Dev. Javier De Las Rivas - CiC (USAL/CSIC) - 2015  23 



Networks with undirected links: ggcoe and ppi biological networks 

Representation and visualization of networks 

Omics era: unraveling biological complexity 
mapping biological networks 

From  Merico, Gfeller & Bader (2010) Nature Biotechnology Javier De Las Rivas - CiC (USAL/CSIC) - 2015  24 



mapping biological networks 
	  
	  

Example of gene to gene coexpression network: ggcoe 

Omics era: unraveling biological complexity 

From  Merico, Gfeller & Bader (2010) Nature Biotechnology Javier De Las Rivas - CiC (USAL/CSIC) - 2015  25 



mapping biological networks 
	  

Example of protein to protein interaction network: ppi 

Omics era: unraveling biological complexity 

From  Braun et al. (2011) Science Javier De Las Rivas - CiC (USAL/CSIC) - 2015  26 



mapping biological networks 
	  
	  

Example of protein to protein interaction network: ppi 

Omics era: unraveling biological complexity 
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Omics era: unraveling biological complexity 
mapping biological networks 
	  

Networks with undirected links: ggcoe and ppi biological networks 

Representation and visualization of networks: hubs 

From  Seebacher & Gavin (2011) Cell Javier De Las Rivas - CiC (USAL/CSIC) - 2015  28 



The ggcoe and ppi networks are 
complex biomolecular networks 
	  

	  

Network topology plays a vital role in 
understanding network architecture and 
performance. 
	  
	  

Several of the most important and 
commonly used topological parameters 
include: 
– degree number of links connected to 1 vertex 
– distance shortest path length 
– diameter maximum distance between any 
two nodes 
– clustering coefficient number of links 
between the vertices within its neighborhood divided 
by the number of possible links between them 
– betweenness fraction of the shortest paths 
between all pairs of vertices that pass through one 
vertex or link 

Omics era: unraveling biological complexity 
topological parameters (network measures) 

From  Zhu et al. (2007) Genes Dev. Javier De Las Rivas - CiC (USAL/CSIC) - 2015  29 



Omics era: unraveling biological complexity 
topological parameters (network measures) 

From  Zhu et al. (2007) Genes Dev. 30 



Omics era: unraveling biological complexity 
topological parameters (network measures) 

Network measures related to "number of friends" (connectivity): 
– degree = connectivity 
– clustering coefficient = inter-connectivity 
– assortativity = average nearest neigbor's connectivity 

From  Seebacher & Gavin (2011) Cell Javier De Las Rivas - CiC (USAL/CSIC) - 2015  31 



Omics era: unraveling biological complexity 
topological parameters (network measures) 

Network measures related to "number of ways" (path-ways): 
– shortest path 
– betweenness = centrality 

From  Seebacher & Gavin (2011) Cell Javier De Las Rivas - CiC (USAL/CSIC) - 2015  32 



Session 3 (9:30 - 12:30, 3h) 
Protein interaction networks 

Session 4 (13:30 - 16:30, 3h) 
Construction and analysis of gene/protein networks 

 
 
 
 
 

- From gene expression signatures to gene coexpression networks 
 

- Definition and properties of protein interaction networks 
 

- Visualize and analyse biomolecular networks in Cytoscape 
 

- Using on-line tools to build gene/protein networks: APID, STRING, 
GeneMANIA, PSICQUIC 

 

- Network medicine: proteins and drugs interactions (STITCH) 
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Networks tool = Cytoscape 
The most powerful tool to build, visualize and analyse networks 
Cytoscape: open source bioinformatics tool for biological network visualization & data integration 

(desktop Java application released under GNU License, LGPL) 

34 



Challenge: improve data integration and analytic methods to understand networks 
	  
	  
	  

http://www.cytoscape.org/ 

Protein-Protein Interactions (PPIs) 
build networks from experimental data: Cytoscape 
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Protein-Protein Interactions (PPIs) 
build networks from experimental data: Cytoscape 

36 



Networks tool = Cytoscape 
The most powerful tool to build, visualize and analyse networks 
	  

Cytoscape is a open source bioinformatics package for 
biological network visualization and data integration 

(desktop Java application released under GNU License, LGPL) 
	  
	  
	  
	  

Main page 
http://www.cytoscape.org/ 

Web 
http://cytoscapeweb.cytoscape.org/ 

Wiki 
http://wiki.cytoscape.org/ 

	  
	  
	  

http://opentutorials.cgl.ucsf.edu/index.php/Tutorial:Introduction_to_Cytoscape 
http://opentutorials.cgl.ucsf.edu/index.php/Tutorial:Introduction_to_Cytoscape-part2 

	  
	  

http://wiki.cytoscape.org/Cytoscape_3/UserManual/Network_Formats 
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Networks tool = Cytoscape 
The most powerful tool to build, visualize and analyse networks 

Cytoscape is a open source bioinformatics package for 
biological network visualization and data integration 

(desktop Java application released under GNU License, LGPL) 

Important publications: 
Nature Protocols (2007) 

Bioinformatics (2011) 



Networks tool = Cytoscape 
The most powerful tool to build, visualize and analyse networks 

39 



build networks from experimental data: Cytoscape 
	  
	  

http://www.cytoscape.org/ 
	  

Comparison of network analyses platforms 

Javier De Las Rivas - CiC (USAL/CSIC) - 2015  40 

Protein-Protein Interactions (PPIs) 

From  Cline et al. (2007) Nature Protocols 



Using Cytoscape 
and the plugin 
APID2NET 
you can build a 
PPI network 
by direct query 
and retrieval from 
APID 

Protein-Protein Interactions (PPIs) 
build networks from experimental data: APID2NET 
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Protein-Protein Interactions (PPIs) 
build networks from experimental data: APID2NET 

APID2NET 
	  

9626 downloads 
	  

(October 2015) 
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Protein-Protein Interactions (PPIs) 
two publications 

43 



Protein-Protein Interactions (PPIs) 
PSICQUIC new tool and service 

Aranda et al. (2011) Nature Methods 



Protein-Protein Interactions (PPIs) 
PSICQUIC new tool and service 

Aranda et al. (2011) Nature Methods 



Protein-Protein Interactions (PPIs) 
PSICQUIC & PSISCORE 

Aranda et al. (2011) Nature Methods 
47 



Protein-Protein Interactions (PPIs) 
Javier De Las Rivas 

References 
	  

•  Aranda et al. (2011) PSICQUIC and PSISCORE: accessing and scoring molecular 
interactions. Nature Methods 8, 528–529. 

•  De Las Rivas J, Fontanillo C. (2010) Protein-Protein Interactions essentials: key 
concepts to building and analyzing Interactome Networks. PLoS Computational 
Biology 6(6): e1000807. 

•  Prieto C, De Las Rivas J. (2010) Structural domain-domain interactions: 
assessment and comparison with protein-protein interaction data to improve 
the interactome. Proteins 78:109-117. 

•  Hernandez-Toro J., Prieto C, De Las Rivas J. (2007). APID2NET: unified 
interactome graphic analyzer. Bioinformatics 23: 2495-2497. 

•  Prieto C, De Las Rivas J. (2006). APID: Agile Protein Interaction DataAnalyzer. 
Nucleic Acids Research 34: W298-302. 

	  

WEB References 
http://bioinfow.dep.usal.es/apid 

http://ubioinfo.cicancer.org/en/index-en.html 
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Networks & Pathways 

genes/proteins in networks 
and 

genes/proteins in pathways 

Comparison and combination of these type of complex data 
	  

Networks & Pathways 
¿The data?: databases, data sources 
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Network databases 
GeneMANIA and STRING 
	  
	  

http://www.genemania.org/ 

http://string-db.org/ 
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Pathways databases 
KEGG and Reactome 
	  
	  

http://www.genome.jp/kegg/ 

http://www.reactome.org/ 

51 



Networks & Pathways 
Comparison and combination of these type of complex data 

http://www.genome.jp/kegg/ http://www.reactome.org/ 

http://string-db.org/ 
http://www.genemania.org/ 

Javier De Las Rivas - CiC (USAL/CSIC) - 2015  52 



CBO 

Javier De Las Rivas - CiC (USAL/CSIC) - 2015 56 

Computational  Biology @ UCT 

Hands-on: Practical Examples 
	  
	  
	  
	  

Explore web resources & tools: GeneMANIA, STRING 
	  
	  

Protein- SETs- 2014.xls 
(175g human, 59g5pc yeast) 



CBO 
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Computational  Biology @ UCT 

Hands-on: Practical Examples 
	  
	  
	  
	  

Start using: Cytoscape 
	  
	  
	  

Cytoscape sampleData 
(yeastH ighQuality. sif

 file) 



Session 3 (9:30 - 12:30, 3h) 
Protein interaction networks 

Session 4 (13:30 - 16:30, 3h) 
Construction and analysis of gene/protein networks 

 
 
 
 
 

- From gene expression signatures to gene coexpression networks 
 

- Definition and properties of protein interaction networks 
 

- Visualize and analyse biomolecular networks in Cytoscape 
 

- Using on-line tools to build gene/protein networks: APID, STRING, 
GeneMANIA, PSICQUIC 

 

- Network medicine: proteins and drugs interactions (STITCH) 
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Networks 
Two major types of networks derived from experimental data 

Two major types of networks derived from large-scale omic data 
	  
	  
1 .– Gene Coexpression Networks: ggcoe 
derived from gene expression profiling and transcriptomic studies 
	  
	  

2 .– Protein-Protein Interaction Networks: ppi 
derived from proteomic studies 
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Griffith et al. (2005) Genomics 

Lee et al. (2004) Genome Research 

Stuart et al. (2003) Science 

Human 
coexpression 
studies 



Stuart et al. (2003) Science 

Human 
coexpression 
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low signal & high noise 



Stuart et al. (2003) Science 

Human 
coexpression 
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low signal & high noise 



Griffith et al. (2005) Genomics 

Lee et al. (2004) Genome Research 

Stuart et al. (2003) Science 

Human 
coexpression 
studies 



Lee et al. (2004) Genome Research 

Experimental 
dataset 
selection 
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Sample bias 



Lee et al. (2004) Genome Research 

≈ 80% of these datasets correspond to “cancer” samples 
	  
	  

¿how “normal” is this? 
	  
	  

¿ do we consider that “tumor cells” usually have totally 
aberrant genome with many altered chromosomes? 
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Sample bias 
“malignant data” 
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breast cancer 
breast cancer 
obesity 
breast cancer 
thyroid papillary tumors 
breast cancer 
blue cell tumors 
astrocytoma 
gastric cancer 
prostate cancer 
breast cancer 
medulloblastoma 
sarcoma 
breast cancer 
breast cancer 
brain tumors 
tumor and normal 
glioma 
leukemia 
breast cancer 

NCI-60 tumor cell lines 
lymphoma 
prefrontal cortex 
prostate cancer 
breast cancer 
breast cancer 
asthma 
NCI-60 tumor cell lines 
diverse tissues 
dermatomyositis 
viral infection 
breast cancer 
leukemia 
muscle 
ovarian cancer 
prostate cancer 
breast cancer 
cell cycle, tumors 
leukemia 
colorectal cancer 

lymphoma 
GIST sarcoma 
leukemia 
lung cancer 
melanoma 
leprosy 
NCI-60 tumor cell lines 
fibroblasts 
parasite response 
liver cancer 
leukemia 
breast cancer 
prostate cancer 
T-cells 
bladder tumors 
bladder tumors 
lung cancer 
leukemia 
inflammatory myopathy 
breast cancer 

microarray datasets in 
Lee et al. (2004) Genome Research 

Sample bias 
“malignant data” 



Human transcriptomic network 
of normal tissues: 

a global map without 
malignant data Key questions 

• Can we use global human gene expression data (i.e. transcriptomic 
genome-wide microarray data) to derive gene coexpression networks ? 

• Is it a reliable way to find coexpression (knowing the large noise and 
background in microarrays and the bad effect of outliyers on correlation) ? 

• How reliable are the data coming from microarrays ? 
Can we calculate and improve the reliability of microarray data ? 
	  
	  

• Which algorithm is good enough to provide a sensible reliable 
expression signal: MAS5, RMA, dCHIP, PLIER, FARMS ...? 
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Prieto et al. (2008) PLoS ONE 

Experimental 
dataset 
selection 
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Normal Samples 



136 microarrays 
hgu133a 
Gene Expression Atlas 

69 

Experimental 
dataset 
selection 

“sample bias” 

22 microarrays 
from “hematopoietic” 
samples 

to achieve 

34 microarrays 
from “brain” 
samples 

transcriptomic global view 
	  
	  

it is critical 
to avoid 

adequate sample selection 



Sample selection 
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normal healthy tissues 
representing the body 
“evenly” (pvclust algortihm: 
uncertainty in hierarchical cluster 
via multiscale bootstrap resampling) 



RMA - Pearson 
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MAS5 - Spearman A B 

48 microarrays of whole tissues / organs 
normal healthy samples (hgu133a) 

Gene Expression Atlas 

Experimental 
dataset 
selection 



Griffith et al. (2005) Genomics 

Lee et al. (2004) Genome Research 

Stuart et al. (2003) Science 
Human 
coexpression 
comparative 
study 
using Stuart et al. approach 



Human 
coexpression 
studies 

mapping 
coexpressing genes 
into KEGG 
pathways to check 
functional 
coherence 
	  
	  

done as in: 
	  

Stuart et al. (2003) Science 
i.e. detection of the 
number of genes 
within each pathway 
that coexpress 
	  
	  

but still noisy data !!! 
73 

This work (2008) 
pathway name (KEGG ID number) nºgenes genes coexp / genes % gn coexp mean r 
Proteasome (3050) 31 28 / 28 1.00 0.69 
Ribosome (3010) 120 52 / 55 0.95 0.75 
Oxidative phosphorylation (190) 129 88 / 95 0.93 0.73 
Focal adhesion (4510) 194 154 / 168 0.92 0.68 
Antigen processing and presentation (4612) 86 71 / 78 0.91 0.75 
Glycan structures - degradation (1032) 30 20 / 22 0.91 0.65 
Neuroactive ligand-receptor interact. (4080) 299 227 / 255 0.89 0.68 
Cell cycle (4110) 114 90 / 102 0.88 0.66 
Regulation of actin cytoskeleton (4810) 208 141 / 161 0.88 0.66 
Cytokine-cytokine receptor interact. (4060) 256 196 / 223 0.88 0.69 
Lee et al. (2004) 
pathway name (KEGG ID number) nºgenes genes coexp / genes % gn coexp 
Ribosome (3010) 120 43 / 44 0.98 
Proteasome (3050) 31 19 / 22 0.86 
Oxidative phosphorylation (190) 129 31 / 44 0.70 
Cell cycle (4110) 114 33 / 47 0.70 
ECM-receptor interaction (4512) 87 16 / 23 0.70 
Gap junction (4540) 92 9 / 13 0.69 
Pathogenic Escherichia coli infection (5130) 49 11 / 16 0.69 
Pathogenic Escherichia coli infection (5131) 49 11 / 16 0.69 
T cell receptor signaling pathway (4660) 93 15 / 22 0.68 
Metabolism of xenobiotics by cytP450 (980) 70 7 / 11 0.64 
Griffith et al. (2005) 
pathway name (KEGG ID number) nºgenes genes coexp / genes % gn coexp 

Ribosome (3010) 120 36 / 38 0.95 
Proteasome (3050) 31 20 / 24 0.83 
Oxidative phosphorylation (190) 129 55 / 67 0.82 
Val, Leu and isoleucine degradation (280) 50 15 / 19 0.79 
ECM-receptor interaction (4512) 87 16 / 22 0.73 
Cell cycle (4110) 114 36 / 51 0.71 
Propanoate metabolism (640) 34 9 / 14 0.64 
Butanoate metabolism (650) 44 9 / 14 0.64 
Hematopoietic cell lineage (4640) 88 18 / 28 0.64 
beta-Alanine metabolism (410) 24 7 / 11 0.64 



rN-plot 

N (number of positives in the random crossvalidation) 

r (
co

rr
el

at
io

n 
fa

ct
or

) 

noise region ≈ random signal 
signal / noise ratio = low 

reliable region ≠ random signal 
signal / noise ratio = high 

r > 0.68 and N > 220 (aprox) 
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Gene2gene coexpression method 
(based in combination of correlation r and crossvalidation N) 



RMA - Pearson 

Ribosome 

Oxidative 
phosphorylation 

Proteasome 

Cytokine-Cytokine 
receptor intaction 

Neuroactive ligand- 
receptor interaction 

Complement and 
coagulation 
cascades 

r (
co

rr
el

at
io

n 
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ct
or

) 

N (nº of positives in the random crossvalidation) 
N (nº of positives in the random crossvalidation) 

B A 

House Keeping 
genes 

Tissue Specific 
genes 
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n 
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n 
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fa
ct

or
) 

Gene2gene coexpression method 
mapping coexpression of house keeping genes and tissue specific genes 
(based in KEGG pathways) 

MAS5 - Spearman 



* * * ** * 

Javier De Las Rivas - CiC (USAL/CSIC) - 2015  76 

(based in combination of correlation r and crossvalidation N) 
precision obtained for 3 reliable networks at high r and N 
	  

RMA – Pearson - Filtered  Mas5 – Spearman - All 

S
pecificity 

Hi-Fi gene2gene coexpression network 

Precision 1 Coefficients Number of Nodes 2 Number of Links 2 

N r 
RMA-Pearson (pre-Filtered) 
0.60 765 0.85 1.672 5.945 
0.70 835 0.87 1.215  3.273 
0.80 925 0.84 983 2.423 
MAS5-Spearman (non-Filtered) 
0.60 605 0.77 3.052 12.669 
0.70 645 0.79 2.295 7.874 
0.80 695 0.81 1.762 4.910 
1. Corresponds to the networks derived for KEGG annotated genes 
2. Corresponds to the full networks including all genes 



Hi-Fi human coexpression network 
network = intersection with 2 methods and precision ≥ 0.60 (r ≥ 0.77, N ≥ 605) 
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Hi-Fi human coexpression network 
Analysis done 
with 2 algorithms 
MCODE 
MCL 
	  
	  
	  
	  
	  

nuclear 
related 
metabolism 
	  
	  

ribosomal and 
translation 
	  
	  

cytoskeleton 

78 



Hi-Fi human 
coexpression network 

Analysis done 
with 2 algorithms 
MCODE 
MCL 
	  
	  
	  
	  
	  

mitochondrial metabolism 
and redox homeostasis 
	  
	  

most genes of 
the COX family, 
the NDUF family and 
the UQCR family 



Hi-Fi human coexpression network (functionally coherent) 
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Coexp Modules  Search in   TF found    p-value TransFac_db TF Gene Name 

Hi-Fi human coexpression network 
(modules coherent in terms of transcription factor TF regulation) 

Module 1 
10 genes 

PAP MTF-1 0.001 T02354 MTF1 metal-regulatory transcription factor 1 
Factory – – 

Module 2 
4 genes 

PAP CRE-BP1 0.0172 T00167 ATF2 activating transcription factor 2 
Factory CRE-BP1 0.0033 

Module 3 
15 genes 

PAP Sp1 0.13 T00759 SP1 Sp1 transcription factor 
Factory Sp1 0.017 
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Human transcriptomic network 
of normal tissues: 

a global map without 
malignant data 

We achieved: 
	  
	  

1st.- Reliable calculation of human genome-wide (global) expression data 
	  
	  

2nd.- Reliable calculation of human gene2gene (global) co-expression data 



Networks & Pathways 
Comparison and combination of these type of complex data 

è 

pathways 

networks 

Wu et al. (2010) 



Networks & Pathways 
Comparison and combination of these type of complex data 
	  
Wu et al. (2010) 

Subnetwork derived from The 
Cancer Genome Atlas (TCGA) 

of somatic mutation data set: 
77 cancer genes 

and 
5 linker genes 
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CBO 
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Computational  Biology @ UCT 

Hands-on: Practical Examples 
	  
	  
	  
	  

Build the coexpression network for a gene list using 
Cytoscape (plugin ReactomeFI, that includes Fl DB) 
http://wiki.reactome.orglindex .php/Rea ctome_FI_ Cytoscape_Piugin_ 4 

	  
	  
	  
	  
	  

Microarray Data Analysis on a Network 
(NejmlogRatioNormGiobaiZScore_070111.txt  human) 



CBO 
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Computational  Biology @ UCT 

Hands-on: Practical Examples 
	  
	  
	  
	  

Build the coexpression network for a gene list using 
Cytoscape (plugin GeneMANIA) 

	  
	  

Protein-
SETs- 2014.xls 

(NOTCH 33p human) 



Session 3 (9:30 - 12:30, 3h) 
Protein interaction networks 

Session 4 (13:30 - 16:30, 3h) 
Construction and analysis of gene/protein networks 

 
 
 
 
 

- From gene expression signatures to gene coexpression networks 
 

- Definition and properties of protein interaction networks 
 

- Visualize and analyse biomolecular networks in Cytoscape 
 

- Using on-line tools to build gene/protein networks: APID, STRING, 
GeneMANIA, PSICQUIC 

 

- Network medicine: proteins and drugs interactions (STITCH) 
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Networks 
Two major types of networks derived from experimental data 

Two major types of networks derived from large-scale omic data 
	  
	  
1 .– Gene Coexpression Networks: ggcoe 
derived from gene expression profiling and transcriptomic studies 
	  
	  

2 .– Protein-Protein Interaction Networks: ppi 
derived from proteomic studies 
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Zhu et al. (2007) Genes Dev. The review shows that 
PPI data are, at present, 
a major part of the new 
systematic approaches 
to large-scale experimental 
determination of 
biomolecular networks 

Protein-Protein Interactions (PPIs) 
biological networks 

From  Zhu et al. (2007) Genes Dev. Javier De Las Rivas - CiC (USAL/CSIC) - 2015  89 



2001 2005 2011200920082004

Protein-Protein Interactions (PPIs) 
our first decade of interactome mappig: PPI data 
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Science Science Nature Science Nat Methods Science
Walhout et al Li et al Rual et al Yu et al Simonis et al Arabidopsis

interactome
consortium



international consortiums 
	  

Our group participates actively in HUPO PSI-MI (Molecular Interactions Workgroup) 

Protein-Protein Interactions (PPIs) 
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There are several 
primary PPIs 
databases, 
but at present 
there is small 
integration. 

	  
	  
	  

PPIs 
proteins 

	  

& 
	  

MIs 
biomolecules 

	  
	  
	  
	  

EU project 
PSIMEx 

FP7-HEALTH-2007-223411 

Protein-Protein Interactions (PPIs) 
international consortiums 
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PLoS Comp. Bio. (2010) 

Protein-Protein Interactions (PPIs) 
review some essential concepts on PPIs 



definition 
	  
	  

The advancement of genome and proteome-wide experimental technologies have 
introduced modern biology in the high complexity of living cells, where thousands 
of biomolecules work together with many cross-talks and cross-regulations. 
	  
	  
	  
To  achieve  a  first  level  of  understanding  of  such  cellular  complexity  we  need  to 
unravel the interactions that occur between all the proteins that integrate a living 
cell. 
	  

BUT, what do we mean by 
protein-protein interaction ? 
	  

just 
physical contact 
	  

or 
	  

other level of biomolecular 
relation  /  association 

Protein-Protein Interactions (PPIs) 

From  De Las Rivas et al. (2004) Comp. Funct. Genomics Javier De Las Rivas - CiC (USAL/CSIC) - 2015  94 



definition 
	  
	  

The advancement of genome and proteome-wide experimental technologies have 
introduced modern biology in the high complexity of living cells, where thousands 
of biomolecules work together with many cross-talks and cross-regulations. 
	  
To  achieve  a  first  level  of  understanding  of  such  cellular  complexity  we  need  to 
unravel the interactions that occur between all the proteins that integrate a living 
cell. 

Protein-Protein Interactions (PPIs) 

From  De Las Rivas et al. (2004) Comp. Funct. Genomics Javier De Las Rivas - CiC (USAL/CSIC) - 2015  95 



It is important to define the different types of associations between proteins in 
order to make clear what are PPI. 
	  

I.- The PPI are proper physical interactions (and these can be direct or indirect) 
	  

pApBpCpD3pE is a complex 
pA  pB 

pC 

pD x 3 

pE 
	  

complex = stable molecular machine 

physical 
direct 

pA with pB 
pD with pE 

or 

physical 
indirect 
pA with pD 
pB with pE 

Protein-Protein Interactions (PPIs) 
definition 

From  De Las Rivas et al. (2004) Comp. Funct. Genomics Javier De Las Rivas - CiC (USAL/CSIC) - 2015  96 



pA  pB 

pC 

pD x 3 

pE 

pF 

pF interacts with 
the complex 

in transient mode 
	  

physical 
direct 

pF with pApB 
	  

or 

physical 
indirect 

pApBpCpD3pE is a complex 
interacts with other proteins 

pF with pE 

It is important to define the different types of associations between proteins in 
order to make clear what are PPI. 
	  

II.- PPI can be stable (i.e. complexes) or transient (i.e. in signaling pathways) 

complex = stable molecular machine 

Protein-Protein Interactions (PPIs) 
definition 

From  De Las Rivas et al. (2004) Comp. Funct. Genomics Javier De Las Rivas - CiC (USAL/CSIC) - 2015  97 



It is important to define the different types of associations between proteins in 
order to make clear what are PPI. 
	  

III.- Just associations but not PPI (because there are not physical interactions) 

pA pX 

pY pDx2 

genetic 
gA and gX 

are corregulated 

metabolic 
pD and pY 

are involved in 
the same 
pathway 

no physical interaction 

Protein-Protein Interactions (PPIs) 
definition 

From  De Las Rivas et al. (2004) Comp. Funct. Genomics Javier De Las Rivas - CiC (USAL/CSIC) - 2015  98 



What do we mean by protein-protein interaction ? 
	  

	  
	  

Protein-to-Protein  interactions  (PPIs)  are  specific  physical 
contacts   between   protein   pairs   that   occur   by   selective 
molecular docking in a particular biological context. 
	  
	  
	  
	  
	  

Forward-looking two main challenges remain in the field: 
	  

(i) a better filtering of false positives in the PPI collections 

(ii) an adequate distinction of the biological context that 
specifies and determines the existence or not of a given PPI at 
a given biological situation. 

Protein-Protein Interactions (PPIs) 
definition 

From  De Las Rivas & Fontanillo (2010) Javier De Las Rivas - CiC (USAL/CSIC) - 2015  99 



PLoS Comp. Bio. (2010) 

Protein-Protein Interactions (PPIs) 
review some essential concepts on PPIs 
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types of experimental methods 
	  
	  

Within the last years a large amount of data on protein-protein interactions in 
cellular systems has been obtained both by the high-throughput and small 
scale technologies. A list of most relevant methods to is presented: 

	  

Complex oriented methods (find multimeric PPIs) 
	  

- Co-Immunoprecipitation (Co-IP) 
- Pull-Down Assays 
- Tandem Affinity Purification + Mass Spectrometry (TAP-MS) 

Binary oriented methods (find dimeric PPIs) 
	  

- Two Hybrid systems (Y2H) 
- Protein Arrays / Protein Chips 

3D-structure based methods (find specific PPI interfaces) 
	  

- X-ray Crystallography (X-ray) 
- Electro Microscopy (EM) 
- Nuclear Magnetic Resonance (NMR) 

Javier De Las Rivas - CiC (USAL/CSIC) - 2015  101 

Protein-Protein Interactions (PPIs) 
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Data about the 
YEAST interactome 

Two main 
high-throughput 
proteomic techniques 
have been applied to 
determine PPIs: 
	  
	  

TAP-MS 
& 
Y2H 

From  Reguly et al. (2006) Journal of Biology 

Protein-Protein Interactions (PPIs) 
types of experimental methods 



Protein-Protein Interactions (PPIs) 
major high-throughput experimental methods 

In recent years two main high-throughput proteomic techniques have been 
applied to determine PPIs: 
	  
	  

– Tandem-Affinity Purification and Mass Spectrometry 
(TAP-MS) provides multimer interactions (complexes) 

– High-throughput Two-Hybrid systems 
(Y2H) provides binary interactions 

Javier De Las Rivas - CiC (USAL/CSIC) - 2015103  



The Human Interactome 
Two major large-scale data types: TAP-MS and Y2H 

In recent years two main high-throughput proteomic techniques have been 
applied to determine PPIs: 
	  
	  
	  
	  

– Tandem-Affinity Purification and Mass Spectrometry 
(TAP-MS) provides multimer interactions (complexes) 

– High-throughput Two-Hybrid systems 
(Y2H) provides binary interactions 

Javier De Las Rivas - CiC (USAL/CSIC) - 2015104  



The network: a systematic map of 
≈ 14,000 interactions between ≈ 4,000 human proteins 

	  
	  

Dr. Marc Vidal 
(Boston) 

Dr. Javier De Las Rivas 
(Salamanca) 

Volume 159, November 2014 

Rolland et al. (2014) Cell 

(Y2H) 
binary 



Volume 162, July 2015 

The network: a systematic map of 
≈ 23,744 interactions between ≈ 7,668 human proteins 

(TAP-MS) 
co-complex 
	  

Huttlin et al. (2015) Cell 



major high-throughput experimental methods 
	  

Different human protein to protein interaction networks: ppi 

From  Rolland et al. (2014) Cell 

Protein-Protein Interactions (PPIs) 
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7K  13K 

48 % 

15 % 

HI-II-2014 



Literature Curated 
Reference Sets 

Lit-RS 
	  

Validated PRS/RRS 

Binary Multiple 
7,475 

Random Reference Set 
RRS 

(1000 ppi, 699 heterodimers) 
random selected & validated 

... 
Positive Reference Set 

PRS (LCI-RS) 
(1000 ppi, 699 heterodimers) 
random selected & validated 

Lit-BM 

109 

Literature Human Interactome 

Lit-BM binary multiple 



Analysis of Human Interactomes 

Cell 2012 

Nature 2012 
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HI-II-2014 Lit-BM-2012 

Comparison of 4 Human Interactomes 
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1425    

1069    

712    

356    
	  

0    

Interactions for 
binned proteins 

min to max density  min to max density 
	  
Pairwise PPIs matrix comparing HIs (in Space III): ordered by date of 1st  publication (PubMed) 

13,358 interactions 
4,100 proteins 

6,491 interactions 
3,409 proteins 
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NOTE: 
excluding 

homodimers 

Comparison of Human Interactomes 



Pairwise PPIs matrix comparing HIs (in Space III): ordered by number of publication (PubMed) 

HI-II-2014 : a broader human interactome 

113 

Comparison of Human Interactomes 



Comparison of Human Interactomes 
 

HI-II-2014 : a broader human interactome 
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HI-II-2014 Lit-BM-2012 
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Comparison of 4 Human Interactomes 



Comparison of 4 Human lnteractomes 
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RAD51D protein 
lost interactions in disease 

Alteration of the interactome in diseases 

119 



Genes associated 
with the same 
disease are 

believed to be 
preferentially 

interconnected in 
interactome 
networks: 

e.g. cancer genes 

Finding new disease genes in the interactome 

120 



The Human Interactome 
Two major large-scale data types: TAP-MS and Y2H 

In recent years two main high-throughput proteomic techniques have been 
applied to determine PPIs: 
	  
	  
	  
	  

– Tandem-Affinity Purification and Mass Spectrometry 
(TAP-MS) provides multimer interactions (complexes) 

– High-throughput Two-Hybrid systems 
(Y2H) provides binary interactions 
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Protein-Protein Interactions (PPIs) 
major high-throughput experimental methods 

In recent years two main high-throughput proteomic techniques have been 
applied to determine PPIs: 
	  
	  

– Tandem-Affinity Purification and Mass Spectrometry 
(TAP-MS) provides multimer interactions (complexes) 

– High-throughput Two-Hybrid systems 
(Y2H) provides binary interactions 

Javier De Las Rivas - CiC (USAL/CSIC) - 2015122  



Volume 162, July 2015 

The network: a systematic map of 
≈ 23,744 interactions between ≈ 7,668 human proteins 

(TAP-MS) 
co-complex 
	  

Huttlin et al. (2015) Cell 



TAP-MS 
	  

	  

Tandem-Affinity Purification and 
Mass Spectrometry (TAP-MS) 
provides multimer interactions (complexes) 

From  Wodak et al. (2008) Mol Cel Proteomics 

Protein Interactions PPIs 

Bait and Prey system 
	  
	  

The "bait proteins" are 
prepared with tags 
in order to fish 
the "prey proteins” 
	  
	  

The co-purified partners 
are identified several times 



Protein Interactions PPIs 
TAP-MS 
	  

	  

Tandem-Affinity Purification and 
Mass Spectrometry (TAP-MS) 
provides multimer interactions (complexes) 
	  
	  
	  

Once the tables of 
co-purified partners 
are produced the spokes model 
is applied to estimate 
the binary interactions 

From  Wodak et al. (2008) Mol Cel Proteomics 125 



The network: a systematic map of 
≈ 14,000 interactions between ≈ 4,000 human proteins 

	  
	  

Dr. Marc Vidal 
(Boston) 

Dr. Javier De Las Rivas 
(Salamanca) 

Volume 159, November 2014 

Rolland et al. (2014) Cell 

(Y2H) 
binary 
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High-throughput Two-Hybrid systems 
provide binary interactions 

Protein Interactions PPIs 
Y2H 

(a) Y2H (yeast two hybrid) system, in yeast cells 

(b)  LUMIER system (luciferase), in mammalian cells 

From  Stelzl & Wanker (2006) Curr Opin Chem Biol 



128 

Y2H classical system:  Coding sequences for a protein X and a protein Y are fused to a DNA 
binding  domain  (DBD,  i.e.  bait  plasmid)  and  a  transcription  activation  domain  (AD,  i.e.  prey 
plasmid). Upon interaction of protein X and protein Y, transcriptional activity of the DBD and 
AD domains is reconstituted leading to reporter gene activation. 
	  

LUMIER system:   Coding sequences for a protein X and a protein Y are fused to a 6xFLAG 
tag sequence and to renilla luciferase and cotransfected in mammalian cells. Upon interaction 
of protein X and protein Y, the luciferase fusion protein remains bound during the procedure 
and is detected via light emission. 

High-throughput Two-Hybrid systems 
provide binary interactions 

Protein Interactions PPIs 
Y2H 
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High-throughput Two-Hybrid systems 
provide binary interactions 

Protein Interactions PPIs 
Y2H 

split-TEV 
2H system 
(scissors) 

	  
	  
From  Suter et al. (2008) Curr Opin Biotechnology 

classical 
nuclear 

Y2H 

membrane 
Y2H 

(Cub-Nub) 

mammalian 
PPI trap 

(JAK-STAT3) 



Interactomes (global approaches) 

In recent years two main high-throughput proteomic techniques have been 
applied to determine PPIs: 
	  
	  
	  
	  

– Tandem-Affinity Purification and Mass Spectrometry 
(TAP-MS) provides multimer interactions (complexes) 

– High-throughput Two-Hybrid systems 
(Y2H) provides binary interactions 
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Protein-Protein Interactions (PPIs) 
review some essential concepts on PPIs 
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experimental methods 
	  
	  

Within the last years a large amount of data on protein-protein interactions in 
cellular systems has been obtained both by the high-throughput and small 
scale technologies. A list of most relevant methods to is presented: 

	  

Complex oriented methods (find multimeric PPIs) 
	  

- Co-Immunoprecipitation (Co-IP) 
- Pull-Down Assays 
- Tandem Affinity Purification + Mass Spectrometry (TAP-MS) 

Binary oriented methods (find dimeric PPIs) 
	  

- Two Hybrid systems (Y2H) 
- Protein Arrays / Protein Chips 

3D-structure based methods (find specific PPI interfaces) 
	  

- X-ray Crystallography (X-ray) 
- Electro Microscopy (EM) 
- Nuclear Magnetic Resonance (NMR) 

Protein-Protein Interactions (PPIs) 
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Protein Interactions (PIs) 
protein arrays/chips: multiple technologies to find protein interactions 



2004 

Protein Interactions (PIs) 
protein arrays/chips: multiple technologies to find protein interactions 

2005 
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protein arrays/chips: multiple technologies to find protein interactions 
	  
	  
	  
	  

Multiple types of 
protein arrays ≈ protein chips 
designed to find different types of 
protein interactions: 

	  
	  

– protein - ligand interactions 
(ligands ≈ metabolites, drugs, chemicals, ...) 

	  
	  

– protein - antibody interactions 
(the protein is the antigen) 

	  
	  

– protein - DNA/RNA interactions 
(many proteins bind nucleic acids) 

	  
	  

– protein - protein interactions 
(many proteins have specific binding to 
other proteins in a stable or transient way) 

Hall, Ptacek & Snyder (2007) 

Protein Interactions (PIs) 2007 
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Signal quantification is a 
technical problem that has to be 

resolved by each platform with 
maximum 

precission and accuracy 

Reverse 
arrays 

Antibody 
arrays 

Proteome 
arrays 

Peptide 
arrays 

Protein Interactions (PIs) 

Javier De Las Rivas - CiC (USAL/CSIC) - 2015137  

protein arrays: 1st  data analysis step is the signal quantification 



proteins arrays to detect protein-protein interations 
	  
	  

Within the last years a large amount of data on protein-protein interactions in 
cellular systems has been obtained both by the high-throughput and small 
scale technologies. A list of most relevant methods to is presented: 

	  

Complex oriented methods (find multimeric PPIs) 
	  

- Co-Immunoprecipitation (Co-IP) 
- Pull-Down Assays 
- Tandem Affinity Purification + Mass Spectrometry (TAP-MS) 

Binary oriented methods (find dimeric PPIs) 
	  

- Two Hybrid systems (Y2H) 
- Protein Arrays / Protein Chips 

3D-structure based methods (find specific PPI interfaces) 
	  

- X-ray Crystallography (X-ray) 
- Electro Microscopy (EM) 
- Nuclear Magnetic Resonance (NMR) 

Protein-Protein Interactions (PPIs) 
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Protein-Protein Interactions (PPIs) 
data sources: databases 

PLoS Comp. Bio. (2010) 

From  De Las Rivas & Fontanillo (2010) Javier De Las Rivas - CiC (USAL/CSIC) - 2015139  

Name  DB full name and type  PPIs sources  Type of MI   species  n prot.  n interact. 

Primary Databases: PPI experimental data (curated from specific SSc & LSc published studies)  (Dec.2009) (Dec.2009) 

BIND 
BioGRID 

DIP 
HPRD 

IntAct 
MINT 

MIPS-MPact 
MIPS-MPPI 

Biomolecular Interaction Network Database  Ssc & Lsc published studies (literature-curated)  PPIs & others   all  [31972]   [58266] 

General Repository for Interaction Datasets  Ssc & Lsc published studies (literature-curated)  PPIs & others   all  [28717]  [108691] 

Database of Interacting Proteins  Ssc & Lsc published studies (literature-curated)  only PPIs  all   20728    57683 

Human Protein Reference Database  Ssc & Lsc published studies (literature-curated)  only PPIs  human   27081    38806 

Database of protein InterAction data  Ssc & Lsc published studies (literature-curated)  PPIs & others   all  [60504]  [202826] 

Molecular INTeractions database  Ssc & Lsc published studies (literature-curated)  only PPIs  all   30089    83744 

MIPS protein interaction resource on yeast  derived from CYGD  only PPIs  yeast    1500     4300 

MIPS mammalian protein-protein interaction db  Ssc published studies (literature-curated)  only PPIs  mammalia     982    937 

Meta Databases: PPI experimental data (integrated and unified from different public repositories) 

APID 
MPIDB 

PINA 

Agile Protein Interaction DataAnalyzer  BIND, BioGRID, DIP, HPRD, IntAct, MINT  only PPIs  all  56460  322579 

The microbial protein interaction database  BIND, DIP, IntAct, MINT, other sets (exp & litcur)  only PPIs  microbial   7810   24295 

Protein Interaction Network Analysis platform  BioGRID, DIP, HPRD, IntAct, MINT, MPact  only PPIs  all     [?]  188823 

Prediction Databases: PPI experimental & predicted data ("functional interactions", i.e. interactions lato sensu derived from different types of data) 

MiMI 
PIPs 

OPHID 
STRING 

UniHI 

Michigan Molecular Interactions  BIND, BioGRID, DIP, HPRD, IntAct & nonPPI dt  PPIs & others   all    [45452]    [391386] 

Human protein-protein interactions prediction db  BIND, DIP, HPRD, OPHID & nonPPI dt  PPIs & others   human   [?]   [37606] 

Online Predicted Human Interaction Database  BIND, BioGRID, HPRD, IntAct, MINT, MPact & nonPPI dt  PPIs & others   human   [?]    [424066] 

Known and Predicted Protein-Protein Interactions  BIND, BioGRID, DIP, HPRD, IntAct, MINT & nonPPI dt  PPIs & others   all  [2590259]  [88633860] 

Unified Human Interactome  BIND, BioGRID, DIP, HPRD, IntAct, MINT & nonPPI dt  PPIs & others   human    [22307]    [200473] 



experimental vs computational 
	  

For a proper study of protein-protein interactions it is very important to distinguish and 
separate the data that come from experimental methods (provided PPIs validated in the 
lab by some technique)  & the data coming from computational methods (that provided 
PPIs infered but not really proved). 

Protein-Protein Interactions (PPIs) 

Many databases and 
repositories of PPIs 
include both 
experimentally and 
computationally 
determined 
interactions and this 
mix may produce 
confusion or false 
expectations in the 
analyses done on 
these combined data. 

From  Aloy and Russell (2006) Nature Reviews Javier De Las Rivas - CiC (USAL/CSIC) - 2015  140 



types of databases 
	  

There are several types of PPIs databases: 
	  

- primary-db 
- meta-db 
- prediction-db 

From  De Las Rivas & Fontanillo (2010) Javier De Las Rivas - CiC (USAL/CSIC) - 2015141  

Protein-Protein Interactions (PPIs) 

Name  DB full name and type  PPIs sources  Type of MI   species  n prot.  n interact. 

Primary Databases: PPI experimental data (curated from specific SSc & LSc published studies)  (Dec.2009) (Dec.2009) 

BIND 

BioGRID 

DIP 

HPRD 

IntAct 

MINT 

MIPS-MPact 

MIPS-MPPI 

Biomolecular Interaction Network Database  Ssc & Lsc published studies (literature-curated)  PPIs & others   all  [31972]   [58266] 

General Repository for Interaction Datasets  Ssc & Lsc published studies (literature-curated)  PPIs & others   all  [28717]  [108691] 

Database of Interacting Proteins  Ssc & Lsc published studies (literature-curated)  only PPIs  all   20728   57683 

Human Protein Reference Database  Ssc & Lsc published studies (literature-curated)  only PPIs  human   27081   38806 

Database of protein InterAction data  Ssc & Lsc published studies (literature-curated)  PPIs & others   all  [60504]  [202826] 

Molecular INTeractions database  Ssc & Lsc published studies (literature-curated)  only PPIs  all   30089   83744 

MIPS protein interaction resource on yeast  derived from CYGD  only PPIs  yeast   1500    4300 

MIPS mammalian protein-protein interaction db  Ssc published studies (literature-curated)  only PPIs  mammalia    982    937 

Meta Databases: PPI experimental data (integrated and unified from different public repositories) 

APID 

MPIDB 

PINA 

Agile Protein Interaction DataAnalyzer  BIND, BioGRID, DIP, HPRD, IntAct, MINT  only PPIs  all  56460  322579 

The microbial protein interaction database  BIND, DIP, IntAct, MINT, other sets (exp & litcur)  only PPIs  microbial   7810   24295 

Protein Interaction Network Analysis platform  BioGRID, DIP, HPRD, IntAct, MINT, MPact  only PPIs  all     [?]  188823 

Prediction Databases: PPI experimental & predicted data ("functional interactions", i.e. interactions lato sensu derived from different types of data) 

MiMI 

PIPs 

OPHID 

STRING 

UniHI 

Michigan Molecular Interactions  BIND, BioGRID, DIP, HPRD, IntAct & nonPPI dt  PPIs & others   all   [45452]    [391386] 

Human protein-protein interactions prediction db  BIND, DIP, HPRD, OPHID & nonPPI dt  PPIs & others   human    [?]     [37606] 

Online Predicted Human Interaction Database  BIND, BioGRID, HPRD, IntAct, MINT, MPact & nonPPI dt  PPIs & others   human    [?]    [424066] 

Known and Predicted Protein-Protein Interactions  BIND, BioGRID, DIP, HPRD, IntAct, MINT & nonPPI dt  PPIs & others   all  [2590259]  [88633860] 

Unified Human Interactome  BIND, BioGRID, DIP, HPRD, IntAct, MINT & nonPPI dt  PPIs & others   human   [22307]    [200473] 



types of databases 
	  

There are several types of PPIs databases: 
	  

- primary-db 
- meta-db 
- prediction-db 

Protein-Protein Interactions (PPIs) 

From  De Las Rivas & Fontanillo (2010) Javier De Las Rivas - CiC (USAL/CSIC) - 2015142  

Name  DB full name and type  PPIs sources  Type of MI   species  n prot.  n interact. 

Primary Databases: PPI experimental data (curated from specific SSc & LSc published studies)  (Dec.2009) (Dec.2009) 

BIND 

BioGRID 

DIP 

HPRD 

IntAct 

MINT 

MIPS-MPact 

MIPS-MPPI 

Biomolecular Interaction Network Database  Ssc & Lsc published studies (literature-curated)  PPIs & others   all  [31972]   [58266] 

General Repository for Interaction Datasets  Ssc & Lsc published studies (literature-curated)  PPIs & others   all  [28717]  [108691] 

Database of Interacting Proteins  Ssc & Lsc published studies (literature-curated)  only PPIs  all   20728   57683 

Human Protein Reference Database  Ssc & Lsc published studies (literature-curated)  only PPIs  human   27081   38806 

Database of protein InterAction data  Ssc & Lsc published studies (literature-curated)  PPIs & others   all  [60504]  [202826] 

Molecular INTeractions database  Ssc & Lsc published studies (literature-curated)  only PPIs  all   30089   83744 

MIPS protein interaction resource on yeast  derived from CYGD  only PPIs  yeast   1500    4300 

MIPS mammalian protein-protein interaction db  Ssc published studies (literature-curated)  only PPIs  mammalia    982    937 

Meta Databases: PPI experimental data (integrated and unified from different public repositories) 

APID Agile Protein Interaction DataAnalyzer  BIND, BioGRID, DIP, HPRD, IntAct, MINT  only PPIs  all  56460  322579 

MPIDB 

PINA 

The microbial protein interaction database  BIND, DIP, IntAct, MINT, other sets (exp & litcur)  only PPIs  microbial  7810  24295 

Protein Interaction Network Analysis platform  BioGRID, DIP, HPRD, IntAct, MINT, MPact  only PPIs  all  [?]  188823 

Prediction Databases: PPI experimental & predicted data ("functional interactions", i.e. interactions lato sensu derived from different types of data) 

MiMI 

PIPs 

OPHID 

STRING 

UniHI 

Michigan Molecular Interactions  BIND, BioGRID, DIP, HPRD, IntAct & nonPPI dt  PPIs & others   all   [45452]    [391386] 

Human protein-protein interactions prediction db  BIND, DIP, HPRD, OPHID & nonPPI dt  PPIs & others   human    [?]     [37606] 

Online Predicted Human Interaction Database  BIND, BioGRID, HPRD, IntAct, MINT, MPact & nonPPI dt  PPIs & others   human    [?]    [424066] 

Known and Predicted Protein-Protein Interactions  BIND, BioGRID, DIP, HPRD, IntAct, MINT & nonPPI dt  PPIs & others   all  [2590259]  [88633860] 

Unified Human Interactome  BIND, BioGRID, DIP, HPRD, IntAct, MINT & nonPPI dt  PPIs & others   human   [22307]    [200473] 



integration & unification of protein interaction data 
	  

We have developed a database that integrates and unifies PPIs: APID & APID2NET 

Javier De Las Rivas - CiC (USAL/CSIC) - 2015143  

Experimental data unified in APID 

From protein interactions to protein networks 



At present 6 source PPI DBs were unified: 
• BIND (Biomolecular Interaction Network DB) 
• BioGRID (Biological Gral. Repository for Interaction Datasets) 
• DIP (Database of Interacting Proteins) 
• HPRD (Human Protein Reference Database) 
•  IntAct (Database system & analysis tools for PI data) 
• MINT (Molecular Interactions Database) 

Data integration 
& unification 

by 
Sequence 

UniProt_ID 
PubMed_ID 

Protein-Protein Interactions (PPIs) 
integration & unification of PPI data 
	  

APID (Agile Protein Interaction DataAnalizer)  http://bioinfow.dep.usal.es/apid 



integration & unification of PPI data 
	  

APID (Agile Protein Interaction DataAnalizer)  http://bioinfow.dep.usal.es/apid 
	  
	  

We are developing a new APID database that will integrate PDB and sDDI (3D) data 

Javier De Las Rivas - CiC (USAL/CSIC) - 2015145  

Protein-Protein Interactions (PPIs) 



integration & unification of PPI data: hsPPIs in APID 
	  
	  

There are several primary PPIs databases, but at present there is small integration: 
	  
	  

in 2010 
human proteins 
11998 proteins 

& 
human interactions 
80032 interactions 

Javier De Las Rivas - CiC (USAL/CSIC) - 2015146  

in 2007 
human interactions 
38832 interactions 

↓
in 2010 

human interactions 
80032 interactions 

Protein-Protein Interactions (PPIs) 



CBO 

Javier De Las Rivas - CiC (USAL/CSIC)- 2015148   

Computational  Biology @ UCT 

Hands-on: Practical Examples 
	  
	  
	  
	  

Build ppi networks in Cytoscape 
(plug ins APID2NET  and PSICQUIC) 

	  
	  

Protein- SETs- 2015.xls 
(PreRIBOSOME,  Proteasome,  NOTCH) 



Challenge: obtain and integrate omic data to build biological networks 
and solve biological questions. 
	  
	  
	  
	  
	  

Three examples based in PPI data: 
	  
	  

1 .– Use of PPI data to build protein networks and find different sub- 
complexes and assembly steps: the PRE-RIBOSOME example. 

2 .– Use of PPI data to build the protein network corresponding to a 
molecular machine: the PROTEASOME example. 
	  
	  

3 .– Use of PPI data and pathways to build integrated protein networks 
and find specific connectors and hubs: the NOTCH example. 

Javier De Las Rivas - CiC (USAL/CSIC)- 2015149   

From protein interactions to protein networks 
build reliable networks with biological meaning: examples 



build reliable networks with biological meaning: example 1 
	  

Building a molecular machine: Pre-RIBOSOME (90S) 
steps for the biogenesis and assemble of the ribosome 

From  Schäfer et al. (2003) EMBO Journal Javier De Las Rivas - CiC (USAL/CSIC) - 2015  150 

From protein interactions to protein networks 



Model of the pathway of 60S pre-ribosome maturation and export 

From  Nissan et al. (2002) EMBO Journal Javier De Las Rivas - CiC (USAL/CSIC) - 2015  151 



build reliable networks with biological meaning: example 1 
	  

Many proteins have been involved in the assemble of Pre-RIBOSOME (90S) 

From protein interactions to protein networks 

From  Perez-Fernandez et al. (2007) Mol. Cell. Biol. Javier De Las Rivas - CiC (USAL/CSIC) - 2015  152 

NameSystematic Uniprot_ID  NameGene UniProt_Name Synonyms MW(kDa) Study SubComplex   Description 
YJL109c P42945 Utp10 UTP10_YEAST na 200.08 1stStudy UTP-A U3 small nucleolar RNA-associated protein 10U3 snoRNA-associate 
YPL126w Q02931 Nan1  NAN1_YEAST Utp17 101.24 1stStudy UTP-A Nucleolar protin NAN1U3 small nucleolar RNA-associated protein 17 
YDR324c Q06679 Utp4  UTP4_YEAST 

Utp8  UTP8_YEAST 
Utp5  UTP5_YEAST 
Utp9  UTP9_YEAST 
Utp15  UTP15_YEAST 

na 87.8 1stStudy UTP-A U3 small nucleolar RNA-associated protein 4U3 snoRNA-associated 
YGR128c P53276 na 80.19 1stStudy UTP-A U3 small nucleolar RNA-associated protein 8U3 snoRNA-associated 
YDR398w Q04177 na 72 1stStudy UTP-A U3 small nucleolar RNA-associated protein 5U3 snoRNA-associated 
YHR196w P38882 na 65.27 1stStudy UTP-A U3 small nucleolar RNA-associated protein 9U3 snoRNA-associated 
YMR093w Q04305 na 57.69 1stStudy UTP-A U3 small nucleolar RNA-associated protein 15U3 snoRNA-associate 
YLR129w Q12220 Dip2  DIP2_YEAST 

Utp21  YL09_YEAST 
na 106.34 1stStudy UTP-B DOM34 interacting protein 2U3 small nucleolar RNA-associated prot 

YLR409c Q06078 na 104.79 1stStudy UTP-B Hypothetical 104.8 kDa Trp-Asp repeats containing protein in RPL31 
YCR057c P25635 Pwp2  PWP2_YEAST Utp1 103.98 1stStudy UTP-B Periodic tryptophan protein 2U3 small nucleolar RNA-associated prot 
YLR222c Q05946 Utp13  UTP13_YEAST 

Utp18  CG48_YEAST 
Utp6  UTP6_YEAST 

na 91.03 1stStudy UTP-B U3 small nucleolar RNA-associated protein 13U3 snoRNA-associate 
YJL069c P40362 na 66.42 1stStudy UTP-B Hypothetical 66.4 kDa Trp-Asp repeats containing protein in SMC3-M 
YDR449c Q02354 na 52.42 1stStudy UTP-B U3 small nucleolar RNA-associated protein 6U3 snoRNA-associated 
YGR090w P53254 Utp22  YG2L_YEAST 

Cka1  CSK21_YEAST 
Cka2  CSK22_YEAST 
Rrp7  RRP7_YEAST 
Ckb1  CSK2B_YEAST 
Ckb2  CSK2C_YEAST 

na 140.48 1stStudy UTP-C Hypothetical 140.5 kDa protein in CTT1-PRP31 intergenic region 
YIL035c P15790 Csk21 44.67 1stStudy UTP-C Casein kinase II, alpha chainCK II alpha subunit 
YOR061W P19454 Csk22 39.4 1stStudy UTP-C Casein kinase II, alpha' chain (CK II) 
YCL031c P25368 na 34.47 1stStudy UTP-C Ribosomal RNA processing protein 7 
YGL019W P43639 Csk2b 32.26 1stStudy UTP-C Casein kinase II beta subunitCK II beta 
YOR039W P38930 Csk2c 29.84 1stStudy UTP-C Casein kinase II beta' subunitCK II beta' 
YJR002w P47083 Mpp10  MPP10_YEAST na 66.95 1stStudy MPP10-C U3 small nucleolar ribonucleoprotein protein MPP10 
YNL075w P53941 Imp4  IMP4_YEAST 

Imp3  IMP3_YEAST 
na 33.48 1stStudy MPP10-C U3 small nucleolar ribonucleoprotein protein IMP4 

YHR148w P32899 na 21.89 1stStudy MPP10-C U3 small nucleolar ribonucleoprotein protein IMP3 
YPL217c Q08965 Bms1  BMS1_YEAST 

Enp2  YG3J_YEAST 
Has1  HAS1_YEAST 
Kre33  YNN2_YEAST 
Krr1  YCF9_YEAST 
Noc4  NOC4_YEAST 
Nop1  FBRL_YEAST 
Nop14  NOP14_YEAST 
Rrp5  RRP5_YEAST 
Utp20  YBA4_YEAST 

na 135.57 1stStudy outSubC Ribosome biogenesis protein BMS1 
YGR145w P48234 na 81.75 1stStudy outSubC Hypothetical WD-repeat protein in MOL1-NAT2 intergenic region 
YMR290c Q03532 na 56.72 1stStudy outSubC Probable ATP-dependent RNA helicase HAS1 
YNL132w P53914 na 119.35 1stStudy outSubC Hypothetical UPF0202 protein YNL132w 
YCL059c P25586 na 37.16 1stStudy outSubC Hypothetical 37.2 kDa protein in CHA1-PRD1 intergenic region 
YPR144c Q06512 Utp19 63.64 1stStudy outSubC Nucleolar complex protein 4U3 small nucleolar RNA-associated prote 
YDL014w P15646 Lot3_FBRL 34.47 1stStudy outSubC FibrillarinNucleolar protein 1 
YDL148c Q99207 Utp2 94.3 1stStudy outSubC Nucleolar complex protein 14U3 small nucleolar RNA-associated pro 
YMR229c Q05022 na 193.13 1stStudy outSubC rRNA biogenesis protein RRP5 
YBL004w P35194 na 287.56 1stStudy outSubC Hypothetical 287.5 kDa protein in PDR3-HTA2 intergenic region 



Combination proteomic techniques, and bioinformatic 
analyses to shed light into the rules of assembly of the yeast 90S 
preribosome. The results indicate that several protein 
subcomplexes work as discrete assembly subunits binding in 
defined steps. 
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A bioinformatic approach that provides a model for the 
topological arrangement of protein components within the fully 
assembled particle. 
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The 90S Preribosome  Is a Multimodular  Structure That Is 
Assembled  through  a Hierarchical  Mechanismvt  

Jorge Perez-Fernandez, Angel  Roman, Javier De Las Rivas,  Xose R. Bustelo, and  Mercedes  Dosil * 
	  

Centro de lnvestigaciOn  del Cancer and lnstituto de Biologfa Molecular y  Celular del  Cancer,  CSI C-University of Salamanca, 
Campus  Unamuno, E-37007 Salamanca,  Spain 

Pwp2p-MYC Rrp7p-MYC Nan1p-MYC Utp4p-MYC 
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Rrp7p 
depletion 

Rrp5p 
depletion 

Nan1p 
depletion 

Pwp2p 
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Rrp5p 
depletion 

Pwp2p 
depletion 

Rrp7p 
depletion 

Rrp5p 
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Pwp2p 
depletion 

UTP-AI 
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Utp10p YJL109c 
Nan1p YPL126w 
Utp4p YDR324c 
Utp8p YGR128c 
Utp5p YDR398w 
Utp9p YHR196w 

Utp15p YMR093w 

Pwp2p/ 
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Pwp2p YCR057c 
Dlp2p YLR129w 

Utp21p YLR409c 
Utp13p YLR222c 
Utp18p YJL069c 
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UTP-C Utp22p YGR090w 
Rrp7p YCL03 1c 
Cka1p YIL035c 

Mpp10 Mpp10p YJR002w 
lmp4p YNL075w 

OTHER 90S 
PROTEINS 

Utp20p YBL004w 
Rrp5p YMR229c 
Bms1p YPL217c 
Kre33p YNL132w 

Noo14o YDL148c 
Enp2p YGR145w 
Noc4p YPR144c 
Has1p YMR290c 
Krr1p YCL059c 

Nop1p YDL014w 



interactions validated by 
≥ 1 experimental method 

interactions validated by 
≥ 2 experimental methods 

build reliable networks with biological meaning: example 1 
	  

Proteomics finds 32 proteins involved in the assemble of Pre-RIBOSOME (90S) 

From  Perez-Fernandez et al. (2007) Mol. Cell. Biol. Javier De Las Rivas - CiC (USAL/CSIC) - 2015156  

From protein interactions to protein networks 



Utp1  Nan1  Utp4  Utp8  Utp5  Utp9  Utp15  Pwp2  Dip2  Utp21  Utp13  Utp18  Utp6  Utp22  Rrp7  Csk21  Csk22  Csk2b  Csk2c  Mpp10  Imp4  Imp3  Utp20   Rrp5   Bms1   Kre33   Nop14   Enp2   Noc4   Has1   Krr1   Nop1 

symmetric matrix of binary protein-protein interactions, 
weighted by the number of experimental methods 

that validate each interaction 

Proteomics finds 32 proteins involved in the assemble of Pre-RIBOSOME (90S) 

From protein interactions to protein networks 
build reliable networks with biological meaning: example 1 

From  Perez-Fernandez et al. (2007) Mol. Cell. Biol. Javier De Las Rivas - CiC (USAL/CSIC) - 2015157  

Utp10 6 3 3 2 4 5 4 1 1 3 3 1 1 1 0 0 0 0 2 0 1 2 0 0 0 0 1 0 0 1 0 

Nan1 5 7 4 6 4 4 0 0 2 2 0 2 1 0 0 0 0 4 2 0 3 3 3 4 4 2 2 1 4 5 

Utp4 3 0 2 2 3 0 2 2 3 3 3 1 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 1 1 

Utp8 2 4 2 3 0 0 0 0 1 3 1 0 0 0 0 0 0 2 0 0 0 1 0 3 0 0 0 0 

Utp5 1 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Utp9 2 2 0 1 0 2 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 2 0 0 0 0 

Utp15 4 0 4 2 0 1 1 1 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 

Pwp2 5 5 6 6 5 1 1 0 0 0 0 5 2 2 3 1 3 4 3 2 3 0 3 5 

Dip2 2 4 6 2 2 0 0 1 0 0 0 0 1 0 1 2 0 0 0 0 0 0 0 

Utp21 6 7 2 3 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 

Utp13 4 1 0 0 0 1 0 0 0 1 0 2 2 1 1 0 0 0 0 2 0 

Utp18 4 2 0 1 1 1 1 1 0 0 1 1 0 1 0 0 0 0 0 1 

Utp6 2 0 0 0 1 1 0 0 1 3 0 0 0 0 1 0 0 1 2 

Utp22 5 4 2 3 1 2 0 1 2 1 0 2 0 2 2 0 0 2 

Rrp7 3 0 0 0 0 0 0 2 2 0 0 0 1 0 1 1 1 

Csk21 6 6 7 0 0 0 0 1 0 1 0 1 0 0 0 0 

Csk22 6 8 0 0 0 0 0 0 0 0 1 0 0 0 1 

Csk2b 5 0 0 0 0 0 0 0 0 0 0 0 0 0 

Csk2c 0 0 0 0 0 0 1 0 0 0 0 0 0 

Mpp10 5 3 0 0 1 2 1 0 0 0 3 3 

Imp4 4 0 1 1 2 0 1 1 1 0 0 

Imp3 0 0 0 1 0 2 1 2 1 0 
Utp20 0 1 0 0 0 0 0 2 0 
Rrp5 1 0 0 0 0 2 0 0 
Bms1 0 0 0 2 0 1 0 
Kre33 0 2 1 1 3 0 
Nop14 1 1 0 3 3 
Enp2 0 0 1 0 
Noc4 0 1 1 
Has1 1 1 
Krr1 2 

Nop1 



Pre-RIBOSOME 
from 
32 proteins 
to 
4 groups 

From protein interactions to protein networks 
build reliable networks with biological meaning: example 1 

From  Perez-Fernandez et al. (2007) Mol. Cell. Biol. Javier De Las Rivas - CiC (USAL/CSIC) - 2015158  



using former matrix we calculate the binary 
distances and we generate a tree 

build reliable networks with biological meaning: example 1 
	  

Proteomics finds 32 proteins involved in the assemble of Pre-RIBOSOME (90S) 

From  Perez-Fernandez et al. (2007) Mol. Cell. Biol. Javier De Las Rivas - CiC (USAL/CSIC) - 2015159  

From protein interactions to protein networks 



We discover 
protein groups that 
correspond to 
subcomplexes 
experimentally 
found 

Pre-RIBOSOME 
from 
32 proteins 
to 
4 sub-complexes 

UTP-A 

UTP-C 

UTP-B 

From  Perez-Fernandez et al. (2007) Mol. Cell. Biol. Javier De Las Rivas - CiC (USAL/CSIC) - 2015  160 

From protein interactions to protein networks 
build reliable networks with biological meaning: example 1 



UTP-C 

build reliable networks with biological meaning: example 1 
	  

Building a molecular machine: Pre-RIBOSOME (90S), 
steps for the biogenesis and assemble of the ribosome 

	  
The 90S pre-ribosomal assembly particle includes several subunits 
UTP-A, UTP-B, UTP-C, etc. 

From  Perez-Fernandez et al. (2007) Mol. Cell. Biol. Javier De Las Rivas - CiC (USAL/CSIC) - 2015  162 

UTP-A 
	  

UTP-B 

From protein interactions to protein networks 



Challenge: obtain and integrate omic data to build biological networks 
and solve biological questions. 
	  
	  
	  
	  
	  

Three examples based in PPI data: 
	  
	  

1 .– Use of PPI data to build protein networks and find different sub- 
complexes and assembly steps: the PRE-RIBOSOME example. 

2 .– Use of PPI data to build the protein network corresponding to a 
molecular machine: the PROTEASOME example. 
	  
	  

3 .– Use of PPI data and pathways to build integrated protein networks 
and find specific connectors and hubs: the NOTCH example. 

Javier De Las Rivas - CiC (USAL/CSIC) - 2015  163 

From protein interactions to protein networks 
build reliable networks with biological meaning: examples 



analyse interaction networks to discover biology: example 2 
	  

A molecular machine within the PPI network: the PROTEASOME 

164 

complex 
Have all the 
subunits the 

same biological 
role? 

From protein interactions to protein networks 



Intramodular hubs vs   Intermodular hubs 

analyse interaction networks to discover biology: example 2 
	  

A molecular machine within the PPI network: the PROTEASOME 

Javier De Las Rivas - CiC (USAL/CSIC) - 2015  165 

network 
All the subunits 
in a complex do 

not have the 
same biological 

role 

From protein interactions to protein networks 



analyse interaction networks to discover biology: example 2 
	  

A molecular machine within the PPI network: the PROTEASOME 
	  

Party hubs vs Date hubs 

complex 
Have all the 
subunits the 

same biological 
role? 

Intramodular hubs vs 
Intermodular hubs 

Taylor et al. (2009) Nat. Biotech. 

Han et al. (2004) Nature 

From protein interactions to protein networks 



Intramodular hubs vs   Intermodular hubs 

analyse interaction networks to discover biology: example 2 
	  

A molecular machine within the PPI network: the PROTEASOME 

Javier De Las Rivas - CiC (USAL/CSIC) - 2015167  

network 
All the subunits 
in a complex do 

not have the 
same biological 

role 

From protein interactions to protein networks 



Challenge: obtain and integrate omic data to build biological networks 
and solve biological questions. 
	  
	  
	  
	  
	  

Three examples based in PPI data: 
	  
	  

1 .– Use of PPI data to build protein networks and find different sub- 
complexes and assembly steps: the PRE-RIBOSOME example. 

2 .– Use of PPI data to build the protein network corresponding to a 
molecular machine: the PROTEASOME example. 
	  
	  

3 .– Use of PPI data and pathways to build integrated protein networks 
and find specific connectors and hubs: the NOTCH example. 
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From protein interactions to protein networks 
build reliable networks with biological meaning: examples 



NOTCH SIGNALING PATHWAY: hsa04330 (KEGG database) 

Pathways 
KEGG: NOTCH signaling 
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NOTCH signaling pathway 
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Pathways 

The notch signaling 
pathway is important 
for cell-cell 
communication, 
which involves gene 
regulation mechanisms 
that control multiple 
cell differentiation 
processes during 
embryonic and adult 
life. 
The notch cascade 
consists of notch and 
notch ligands, as well 
as intracellular proteins 
transmitting the notch 
signal to the cell's 
nucleus. 
Notch signaling is 
dysregulated in many 
cancers. 



Pathways 

171 

NOTCH signaling pathway 



NOTCH SIGNALING PATHWAY: hsa04330 (KEGG database) 

From PPI & pathways to protein networks 
build reliable networks with biological meaning: example 3 
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NOTCH1 
NOTCH2 
NOTCH3 
NOTCH4 

NOTCH SIGNALING PATHWAY: hsa04330 (KEGG database) 

From PPI & pathways to protein networks 
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NOTCH PROTEIN INTERACTION NETWORK: NOTCH1, 2, 3, 4 (APID database) 
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New method: 
transfors 
a pathway in a network 
showing 
the paralogous proteins, 
the type of relation 
plus 
the physical interactions & 
the tissue-specificity 
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tissue-specificity: 
the nodes in yellow correspond to proteins expressed in liver 
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NOTCH SIGNALING PATHWAY: hsa04330 (KEGG database) transformed in a NETWORK 
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Tissue-specificity: nodes in yellow correspond to proteins expressed in liver 
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SUH & NOTCH2 central nodes of the network 

HDAC1/2 is enhanced in the global view 

The network analysis confirms 
the central nodes of the pathway 



Challenge: obtain and integrate omic data to build biological networks 
and solve biological questions. 
	  
	  
	  
	  
	  

Three examples based in PPI data: 
	  
	  

1 .– Use of PPI data to build protein networks and find different sub- 
complexes and assembly steps: the PRE-RIBOSOME example. 

2 .– Use of PPI data to build the protein network corresponding to a 
molecular machine: the PROTEASOME example. 
	  
	  

3 .– Use of PPI data and pathways to build integrated protein networks 
and find specific connectors and hubs: the NOTCH example. 
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genes/proteins in networks and in pathways 
	  
	  
	  
	  

Conclusions 
	  
	  
	  

– There are clear links between the proteins working in a 
pathway and the interaction network corresponding to such 
proteins. 

– There are useful databases and tools to explore pathways 
and networks using query sets: Reactome, KEGG, 
GeneMANIA, STRING. 

– The integration and functional analysis of pathways and 
networks can help to find key genes/proteins involved in a 
studied biological state. 
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