
FGNet
Functional Gene Networks

derived from biological enrichment analyses

Sara Aibar, Celia Fontanillo, Conrad Droste, and Javier De Las Rivas

Bioinformatics and Functional Genomics Group
Centro de Investigacion del Cancer (CiC-IBMCC, CSIC/USAL)

Salamanca - Spain

October 22, 2014

Version: 3.0

Contents

1 Introduction to FGNet 3

2 Installation 5

3 Creating a network from a list of genes/proteins 5
3.1 Graphical User Interface (GUI) . 6
3.2 In R code. 6

3.2.1 Functional Enrichment Analysis (FEA) 7
3.2.2 HTML report . 9
3.2.3 Individual networks . 10

4 Editing and creating new networks 13
4.1 Incidence matrices . 13
4.2 Functional network . 15
4.3 Bipartite and intersection network . 17
4.4 Terms networks . 19
4.5 Genes - Terms networks . 21

5 Filtering and selecting clusters 22
5.1 Filtering based on a cluster property . 24
5.2 Selecting clusters with specific keywords 25
5.3 Selecting specific clusters . 26
5.4 Filtering based on a gene-term set property 26

1

FGNet 2

6 Other auxiliary functions 29
6.1 analyzeNetwork() . 29
6.2 plotGoAncestors() . 32
6.3 plotKegg() . 33

FGNet 3

1 Introduction to FGNet

FGNet allows to perform a Functional Enrichment Analysis (FEA) on a list of genes or
expression set, and transform the results into networks. The resulting functional networks
provide an overview of the biological functions of the genes/terms, and allows to easily
see links between genes, overlap between clusters, finding key genes, etc.

FGNet takes as input a query list of genes selected by the user, and builds and displays
networks of genes based in the existence of common functional terms that are enriched in
certain subsets of genes of the list. By doing this, the tool allows disclosing groups/clusters
of genes that have similar annotations and so they may have similar biological function
in the cell. The discovery of molecular machines or functional modules within the cell
(i.e. genes or proteins that work together to perform a biological process in the cells)
is essential in modern molecular medicine and systems biology, because many times we
do not know which are the gene partners playing in the same roles in a pathological
state. FGNet is a tool that helps to create functional connections between different
genes/proteins based on annotations. By grouping similar, redundant and homogeneous
annotation content from the same or different biological resources into gene-term groups,
the biological interpretation of large gene lists moves from a gene centric approach (where
each gene is independent) to a functional-module centric approach (where the genes are
interconnected). In this way, FGNet can provide a better representation of complex
biological processes and reveal associations between genes.

Biological functional analysis

After obtaining a list of genes or proteins from an experiment or omic studies (microarrays,
RNAseq, mass spectrometry, etc), the next step is usually to perform a functional analysis
of the genes to search for the biological functions or processes in which they are involved.
In order to facilitate the analysis of large lists of genes, multiple functional enrichment
tools have been developed. These tools search for the genes in biological databases (i.e. GO,
Kegg, Interpro), and test whether any biological annotations are over-represented in the
query gene list compared to what would be expected in the whole population. However,
the raw output from a functional enrichment analysis often provides dozens or hundreds
of terms, and it still requires a lot of time and attention to go through the whole list of
genes and annotations. A way to simplify this task is grouping genes and terms which
often appear together and create associated networks: the Functional Networks.

FGNet builds the functional networks, based on data from a previous functional enrichment
analysis (FEA). The package provides the functions to perform the FEA through four
specific tools:

� DAVID with Functional Annotation Clustering (DAVID-FAC), which measures
relationships among annotation terms based on their co-association with subsets
of genes within the query gene list (Huang et al.). This type of clustering mostly
results in groups of highly related terms, such as synonymous annotations from
different annotation spaces (i.e. term “glycolysis” in KEGG and GO-BP), which also
share most of their genes. This tool provides great coverage but does not avoid
redundant terms and very general terms (like “signal transduction” or “regulation of
transcription” that correspond to specific terms in Gene Ontology, GO).

FGNet 4

� GeneTerm Linker, a post-enrichment tool, which focuses on clearing and sorting
the results from a previous modular enrichment analysis. This is achieved by filtering
general terms with low information content (i.e. cellular process or protein binding)
and redundant annotations (i.e. metabolic process and primary metabolic process).
The remaining gene-term sets are grouped into metagroups based on their shared
genes and terms (using a reciprocal linkage approach) (Fontanillo et al.).

� TopGO (Alexa et al.), an enrichment analysis tool based on Gene Ontology (GO)
that tests GO terms while accounting for the topology of the GO graph to eliminate
local similarities and dependencies between GO terms. TopGO does not provide
clusters, and therefore the functional network is built using only the gene-term sets.
TopGO can be applied off-line.

� GAGE (Luo et al.), a gene set enrichment analysis (GSEA) tool. It searches for
functional enrichment in gene sets (i.e. KEGG pathways, Reactome, GO) and allows
including a signal value -like expression changes- to rank the genes and then to
identify the enrichment in functional terms that are altered (i.e. changed in genes
UP and DOWN) or altered consistently in one direction (UP or DOWN). GAGE
also clusters the resulting enriched gene-term sets and can be applied off-line.

To build the network based on other other tools, the raw output should be saved into a
text file which contains the enriched terms and their genes. (For more details see function
format_results()).

Functional network

The functional network is the representation of the results from a functional enrichment
analysis.

In the default network, all the nodes of the network are of the same type, i.e. genes OR
terms, which are linked to each other if they are in the same gene-term set. In the plot,
the genes/terms in the same groups (metagroups or clusters) are surrounded by a common
background color.

In the bipartite network, the nodes are of two types, allowing to link the genes or terms,
with the clusters they belong to. This network, can be built as an intersection network , a
simplified functional network where all the genes/terms that belong to only one metagroup
are clustered into a single node. This simplified network contains only the nodes in several
groups.

In addition to the networks, FGNet also provides a few functions for further analysis.
These functions allow to get a distance matrix , which represents the similarity between
the groups based on the genes they share with each other (binary distance), and the
distribution of degree and betweenness within the network and subnetworks, in order
to find the most important genes (hubs).

All these functionalities can be accessed directly through the appropriate functions or the
graphical user interface (GUI). In addition, FGNet also allows to generate an HTML
report with an overview of these plots and analyses for a specific gene list.

FGNet 5

Examples of funtional network for different analyses.

2 Installation

To install FGNet from Bioconductor, type in your R console:

source("http://bioconductor.org/biocLite.R")

biocLite("FGNet")

To reduce system requirements, only the minimum packages are required to execute FGNet.
However, there are several functionalities that require further packages. i.e. the Graphical
User Interface (GUI) requires “RGtk2”, the FEA analyses might require “RDAVIDWeb-
Service”, “gage”, “topGO” or some annotation packages. . . etc.

To make sure all FGNet functionalities are available, install the following packages:

biocLite(c("RGtk2", "RCurl",

"RDAVIDWebService", "gage", "topGO", "KEGGprofile",

"GO.db", "KEGG.db", "reactome.db", "org.Sc.sgd.db"))

3 Creating a network from a list of genes/proteins

To generate a functional network with FGNet:

1. Perform a Functional Enrichment Analysis (FEA) on a list of genes or expression
set.

FEA tool Online? Input Annotations

DAVID Yes Gene list Many

Gene-Term Linker Yes Gene list GO, KEGG, Interpro

TopGO No Gene list GO

GAGE (GSEA) No Expression set Any gene set

2. Create an HTML report with multiple views of the networks and analyses.

3. Personalize or analyze an specific network.

These steps are integrated into the Graphical User Interface (GUI), which provides access
to the main functionalities of FGNet.

FGNet 6

3.1 Graphical User Interface (GUI)

The Graphical User Interface (GUI) provides access to most FGNet functionalities in
Windows and Linux (The current version of the GUI is not available for Mac OS X Snow
Leopard).
To launch the GUI, type in the R console:

library(FGNet)

FGNet_GUI()

In case you already have a gene list or gene expression from a previous analysis, it is
possible to load it directly into the GUI genes field by passing it as argument:

geneExpr <- c("YBL084C", "YDL008W", "YDR118W", "YDR301W", "YDR448W",

"YFR036W", "YGL240W", "YHR166C", "YKL022C", "YLR102C", "YLR115W",

"YLR127C", "YNL172W", "YOL149W", "YOR249C")

geneExpr <- setNames(c(rep(1,10),rep(-1,5)), geneExpr)

FGNet_GUI(geneExpr)

3.2 In R code. . .

The first step in the workflow is always is to perform a Functional Enrichment Analysis
(FEA) on a list of genes or expression set.
Once the FEA is ready, you can proceed to generate the HTML report or the individual
network/analyses:

FGNet 7

For help or more details on any functions or their arguments, just set a ? before its name.

?FGNet_report

3.2.1 Functional Enrichment Analysis (FEA)

Since the arguments required to perform the FEA depends on the tool, there are several
FEA functions:

FEA tool Function Output group type

DAVID fea_david() Clusters

TopGO fea_topGO() No grouping

Gene-Term Linker fea_gtLinker() & fea_gtLinker_getResults() Metagroups

GAGE fea_gage() Clusters

Other format_feaResults()

All the FEA functions and FGNet_report() save the results in the current working
directory.

getwd()

Here is an example analyzing a gene list with the different tools:

genesYeast <- c("ADA2", "APC1", "APC11", "APC2", "APC4", "APC5", "APC9",

"CDC16", "CDC23", "CDC26", "CDC27", "CFT1", "CFT2", "DCP1", "DOC1",

"FIP1", "GCN5", "GLC7", "HFI1", "KEM1", "LSM1", "LSM2", "LSM3",

"LSM4", "LSM5", "LSM6", "LSM7", "LSM8", "MPE1", "NGG1", "PAP1",

"PAT1", "PFS2", "PTA1", "PTI1", "REF2", "RNA14", "RPN1", "RPN10",

"RPN11", "RPN13", "RPN2", "RPN3", "RPN5", "RPN6", "RPN8", "RPT1",

"RPT3", "RPT6", "SGF11", "SGF29", "SGF73", "SPT20", "SPT3", "SPT7",

"SPT8", "TRA1", "YSH1", "YTH1")

library(org.Sc.sgd.db)

geneLabels <- unlist(as.list(org.Sc.sgdGENENAME))

genesYeast <- sort(geneLabels[which(geneLabels %in% genesYeast)])

Optional: Gene expression (1=UP, -1=DW)

genesYeastExpr <- setNames(c(rep(1,28), rep(-1,30)),genesYeast)

FGNet 8

DAVID
Using DAVID requires internet connection. In addition, we recommend to register at
http://david.abcc.ncifcrf.gov/webservice/register.htm to perform the queries
through its Web Service.

By default, geneIdType="ENSEMBL_GENE_ID". To replace the gene IDs by readable names
in the plots and HTML report, use the argument geneLabels. To see the gene IDs sup-
ported by DAVID’s Web Service, use: getIdTypes(DAVIDWebService$new(email=...)).

feaResults_David <- fea_david(names(genesYeast), geneLabels=genesYeast,

email="example@email.com")

?fea_david

TopGO
Since TopGO uses local databases, it does not require internet connection.

The results from topGO are provided as individual gene-term sets not grouped into clusters.
FGNet treats each gene-term set as a single cluster.

feaResults_topGO <- fea_topGO(genesYeast,

geneIdType="GENENAME", organism="Sc")

?fea_topGO

Gene-Term Linker
Since the analysis with Gene-Term Linker usually takes several minutes to be ready, the
workflow is divided in two steps: (1) sending the analysis request, and (2) retrieving the
results:

jobID <- fea_gtLinker(geneList=genesYeast, organism="Sc")

?fea_gtLinker

once the analysis is ready. . .

jobID <- 3907019

feaResults_gtLinker <- fea_gtLinker_getResults(jobID=jobID, organism="Sc")

GAGE
As a GSEA approach, instead of performing the functional enrichment over a gene list,
gage requires a raw expression set and the samples to compare:

library(gage)

data(gse16873)

Set gene labels? (they need to have unique identifiers)

library(org.Hs.eg.db)

geneSymbols <- select(org.Hs.eg.db,columns="SYMBOL",keytype="ENTREZID",

keys=rownames(gse16873))

http://david.abcc.ncifcrf.gov/webservice/register.htm

FGNet 9

geneLabels <- geneSymbols$SYMBOL

names(geneLabels) <- geneSymbols$ENTREZID

head(geneLabels)

GAGE:

feaResults_gage <- fea_gage(eset=gse16873,

refSamples=grep('HN',colnames(gse16873)),

compSamples=grep('DCIS',colnames(gse16873)),

geneLabels=geneLabels, annotations="REACTOME",

geneIdType="ENTREZID", organism="Hs")

?fea_gage

Other tools
To import the results from a functional enrichment analysis performed with other tools,
see:

?format_results()

Web analysis
FGNet can also be applied to an analysis performed at DAVID and GeneTerm Linker
web site:

� DAVID: http://david.abcc.ncifcrf.gov (Functional Annotation Clustering Tool)

� GeneTerm Linker: http://gtlinker.cnb.csic.es

To import these results into FGNet, use DAVID’s download file or GeneTerm linker’s
job ID, and the functions format_david() or fea_gtLinker_getResults():

feaResults_David <- format_david(

"http://david.abcc.ncifcrf.gov/data/download/90128.txt")

feaResults_gtLinker <- fea_gtLinker_getResults(jobID=3907019)

3.2.2 HTML report

The HTML report function allows to create a comprehensive report including different
views of the Functional Network, the cluster/metagroup legend, and some further statistics
directly directly from a gene list.

Here is the code to use FGNet_report() with each of the previous examples:

http://david.abcc.ncifcrf.gov
http://gtlinker.cnb.csic.es

FGNet 10

FGNet_report(feaResults_David, geneExpr=genesYeastExpr, plotKeggPw=FALSE)

FGNet_report(feaResults_topGO, geneExpr=genesYeastExpr)

FGNet_report(feaResults_gtLinker, geneExpr=genesYeastExpr)

FGNet_report(feaResults_gage)

By default, the clusters included in these reports are filtered out to get cleaner results. The
default values depend on the tool, and can be modified through FGNet report arguments:

data(FEA_tools)

FEA_tools[,4:6]

FGNet_report(feaResults_gtLinker, filterThreshold=0.3)

?FGNet_report

3.2.3 Individual networks

After the FEA is ready, it is also possible to generate specific networks rather than the
full report. Here is a simple example on how to use fea2incidMat() to generate the
incidence matrices that represent the networks and plot them. There are more detailed
examples on how to edit and explore the networks in sections editing and creating new
networks (sec. 4) and filtering and selecting clusters (sec. 5).

feaResults <- feaResults_gtLinker

incidMat <- fea2incidMat(feaResults)

incidMat$metagroupsMatrix[1:5, 1:5]

1 2 3 4 5

ADA2 0 1 0 0 0

APC1 0 0 1 0 0

APC11 0 0 1 0 0

APC2 0 0 1 0 1

APC4 0 0 1 0 0

incidMat_terms <- fea2incidMat(feaResults, key="Terms")

incidMat_terms$metagroupsMatrix[5:10, 1:5]

1 2 3 4 5

Chromatin assembly (BP) (GO:0031497) 0 0 1 0 0

Chromatin modification (BP) (GO:0016568) 0 1 0 0 0

Cytoplasmic mRNA processing body (CC) (GO:0000932) 0 0 0 1 0

Enzyme regulator activity (MF) (GO:0030234) 0 0 0 0 1

Histone acetylation (BP) (GO:0016573) 0 1 0 0 0

Histone acetyltransferase activity (MF) (GO:0004402) 0 1 0 0 0

These incidence matrices can be plotted and analyzed in different ways:

FGNet 11

functionalNetwork(incidMat, geneExpr=genesYeastExpr,

plotTitleSub="Default gene view")

getTerms(feaResults)[1]

$`Metagroup 1`

Terms

[1,] "MRNA cleavage and polyadenylation specificity factor complex (CC)"

[2,] "MRNA cleavage (BP)"

[3,] "MRNA cleavage factor complex (CC)"

[4,] "MRNA polyadenylation (BP)"

[5,] "MRNA surveillance pathway"

[6,] "Termination of RNA polymerase II transcription, poly(A)-coupled (BP)"

[7,] "Termination of RNA polymerase II transcription, poly(A)-independent (BP)"

FGNet 12

functionalNetwork(incidMat_terms, plotOutput="dynamic")

functionalNetwork(incidMat_terms, plotType="bipartite",

plotTitleSub="Terms in several metagroups")

FGNet 13

4 Editing and creating new networks

In this section we will use the functional analysis of an Alzheimer dataset (GSE4757):

jobID <- 1639610

feaAlzheimer <- fea_gtLinker_getResults(jobID=jobID, organism="Hs")

The variable feaAlzheimer contains the raw results from the functional analysis. The
slot metagroups could also be clusters or missing depending on the FEA tool:

names(feaAlzheimer)

[1] "queryArgs" "metagroups" "geneTermSets" "fileName"

head(feaAlzheimer$metagroups)

To see the terms in each cluster/metagroup use getTerms():

getTerms(feaAlzheimer)[3:4]

$`Metagroup 3`

Terms

[1,] "Alzheimer's disease"

[2,] "Calcium ion transport (BP)"

[3,] "Calcium signaling pathway"

[4,] "Calmodulin binding (MF)"

[5,] "GnRH signaling pathway"

[6,] "Induction of apoptosis by extracellular signals (BP)"

[7,] "Long-term potentiation"

[8,] "Melanogenesis"

[9,] "Neurotrophin signaling pathway"

[10,] "Salivary secretion"

[11,] "Tuberculosis"

[12,] "Vascular smooth muscle contraction"

[13,] "Wnt signaling pathway"

##

$`Metagroup 4`

Terms

[1,] "Glutamatergic synapse"

[2,] "Postsynaptic density (CC)"

[3,] "Postsynaptic membrane (CC)"

[4,] "Synapse (CC)"

4.1 Incidence matrices

The FEA results should be transformed into incidence matrices to create the network.
These matrices are the internal representation of the network: they contain which genes
are in each metagroup or cluster and in each gene-term set. Therefore, it is in this step
where the main shape of the network is determined.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4757

FGNet 14

The function to create the incidence matrices is fea2incidMat(). It allows to filter out
clusters, decide whether the networks should be gene-based or term-based, establish the
groups to link the genes/terms, etc. . .
We will start the example creating a simple gene-based network:

incidMat <- fea2incidMat(feaAlzheimer)

head(incidMat$metagroupsMatrix)

1 2 3 4 5 6 7 8 9

ACTN1 1 0 0 0 1 0 0 0 0

ADD3 1 0 1 0 0 0 0 0 0

ANO3 1 0 0 0 0 0 0 0 0

APOE 1 0 0 0 0 1 0 0 1

ATP2B1 0 0 1 0 0 0 0 0 0

C7 1 0 0 0 0 0 0 0 0

incidMat$gtSetsMatrix[1:5, 14:18]

1.14 1.15 1.16 1.17 1.18

ACTN1 0 1 0 1 1

ADD3 0 0 0 0 0

ANO3 0 0 0 0 0

APOE 0 0 1 0 0

ATP2B1 0 0 0 0 0

To filter or select with metagroups to show, use the arguments filterAttribute,
filterOperator and filterThreshold. filterAttribute should be a column from
the feaAlzheimer$clusters or feaAlzheimer$metagroups data frames. The recom-
mended filters for each tool can be seen in the object FEA_tools, which contains the
default filters when generating the HTML report:

data(FEA_tools)

FEA_tools[,4:6]

incidMatFiltered <- fea2incidMat(feaAlzheimer,

filterAttribute="Silhouette Width", filterOperator="<", filterThreshold=0.2)

To see which metagroups/clusters have been filtered out and will not be shown in the
networks:

incidMatFiltered$filteredOut

For more on selecting and filtering groups see section 5. To build the networks based on
terms, use the argument key="Terms".

FGNet 15

4.2 Functional network

The function functionalNetwork() generates and plots the networks. In case there is
available expression data, it can be used for representation in this step:

(Fake expression data)

genesAlz <- rownames(incidMat$metagroupsMatrix)

genesAlzExpr <- setNames(c(rep(1,50), rep(-1,27)), genesAlz)

The default plot will plot all the genes/terms in the network, and will return the
networks as igraph objects and matrices in an invisible list. The argument keepColors
determine whether the colors should be consistent, taking into account the filtered groups,
or restarted:

fNw <- functionalNetwork(incidMatFiltered, geneExpr=genesAlzExpr, keepColors=FALSE)

By setting the parameter plotOutput="dynamic" instead of an static plot, it will create
an interactive one. By setting plotOutput="none", it is possible to produce only the
network without plotting.

FGNet 16

functionalNetwork(incidMatFiltered, geneExpr=genesAlzExpr, plotOutput="dynamic")

fNw <- functionalNetwork(incidMatFiltered, plotOutput="none")

Since the returned networks are iGraph objects, they can be used or analyzed as such:

names(fNw)

[1] "iGraph" "adjMat"

names(fNw$iGraph)

[1] "commonClusters" "commonGtSets"

library(igraph)

clNw <- fNw$iGraph$commonClusters

clNw

IGRAPH UN-- 49 334 --

+ attr: name (v/c)

vcount(clNw)

ecount(clNw)

sort(betweenness(clNw), decreasing=TRUE)[1:10]

igraph.to.graphNEL(clNw)

In dynamic plots (tkplot) it is not possible to draw the metagroup background. However,
you can save the layout of a dynamic network, and plot it as static using the argument
vLayout:

functionalNetwork(incidMatFiltered, plotOutput="dynamic")

Modify the layout...

saveLayout <- tkplot.getcoords(1) # tkp.id (ID of the tkplot window)

functionalNetwork(incidMatFiltered, vLayout=saveLayout)

FGNet 17

4.3 Bipartite and intersection network

The default bipartite version of the functional network plots the intersection network :
a simplified functional network, containing only the nodes in several metagroups and the
metagroups they belong to. In this network, metagroup nodes (the coloured nodes) can
be seen as a cluster of all the genes/proteins that belong only to that metagroup:

mgKeyTerm <- keywordsTerm(getTerms(feaAlzheimer),

nChar=100)[-c(as.numeric(incidMatFiltered$filteredOut))]

functionalNetwork(incidMatFiltered, plotType="bipartite", legendText=mgKeyTerm)

FGNet 18

To plot a full bipartite network including all the nodes, just set keepAllNodes=TRUE:

functionalNetwork(incidMatFiltered, geneExpr=genesAlzExpr, plotType="bipartite",

keepAllNodes=TRUE, plotTitleSub="Bipartite network will all nodes",

legendText=mgKeyTerm)

FGNet 19

4.4 Terms networks

In the same way we have built networks to explore the relationship between genes, the
same approach can be used to explore the relationship between the biological terms in the
enrichment analysis. i.e. to see which biological terms are usually associated, or locate
which terms are in several groups. To do so, build the incidence matrices based on terms
instead of genes using the argument key="Terms".

incidMatTerms <- fea2incidMat(feaAlzheimer, key="Terms")

functionalNetwork(incidMatTerms, plotType="bipartite",

plotTitle="Terms in several metagroups")

By default, the functional network is built establishing links between nodes (genes or
terms) in the same gene-term sets. Depending on the tool, this network might have few
or no edges:

functionalNetwork(incidMatTerms, weighted=TRUE, plotOutput="dynamic")

To plot a network with links between all the terms in the same cluster or metagroups,
use fea2incidMat() with the $cluster or $metagroup slots from the FEA, in order to
consider the whole cluster/metagroup as a gene-term set:

FGNet 20

incidMatTerms <- fea2incidMat(feaAlzheimer$metagroups, clusterColumn="Metagroup",

key="Terms",

filterAttribute="Silhouette.Width", filterThreshold=0.2)

functionalNetwork(incidMatTerms, legendText=FALSE, plotOutput="dynamic")

functionalNetwork(incidMatTerms, legendText=FALSE)

Since GeneTerm Linker filters out generic and redundant terms from the final metagroups,
by default these terms are not plotted. To include them in the graph, set the argument
removeFiltered=FALSE (only available for GeneTerm Linker).

incidMatTerms <- fea2incidMat(feaAlzheimer, key="Terms", removeFilteredGtl=FALSE)

par(mfrow=c(1,2))

functionalNetwork(incidMatTerms, vLabelCex=0.2,

plotTitle="Including filtered terms", legendText=FALSE)

functionalNetwork(incidMatTerms, plotType="bipartite", vLabelCex=0.4,

plotTitle="Including filtered terms")

For more information on the filtered terms see (Fontanillo et al) or http://gtlinker.

cnb.csic.es/gtset/help .

http://gtlinker.cnb.csic.es/gtset/help
http://gtlinker.cnb.csic.es/gtset/help

FGNet 21

4.5 Genes - Terms networks

To build a genes-terms network, we can use the bipartite plot with the appropriate
formatting of the input matrices.
For many FEA tools it will be enough with applying the fea2incidMat() directly to the
$geneTermSets matrix selecting the gene-term sets we want to plot. i.e. gene-term sets
in a specific cluster, filter generic terms (terms annotated to more than X genes), etc. . .
Note that this approach might not be appropriate for GeneTerm Linker, since it groups
several terms into each gene-term set.

txtFile <- paste(file.path(system.file('examples', package='FGNet')),

"DAVID_Yeast_raw.txt", sep=.Platform$file.sep)

feaResults_David <- format_david(txtFile, jobName="David_example",

geneLabels=genesYeast)

feaResults_David <- fea_david(names(genesYeast), email="...",

geneLabels=genesYeast)

gtSets <- feaResults_David$geneTermSets

gtSets <- gtSets[gtSets$Cluster %in% c(9),]

gtSets <- gtSets[gtSets$Pop.Hits<500,]

Then, create a terms-genes incidence matrix with fea2incidMat(), and plot the net-
work. . .

termsGenes <- t(fea2incidMat(gtSets, clusterColumn="Terms")$clustersMatrix)

library(R.utils)

rownames(termsGenes) <- sapply(strsplit(rownames(termsGenes), ":"),

function(x) capitalize(x[length(x)]))

termsGenes[1:5,1:5]

CDC16 DOC1 GLC7

Anatomical structure morphogenesis 1 1 1

Cell differentiation 1 1 1

FGNet 22

Sporulation resulting in formation of a cellular spore 1 1 1

Developmental process 1 1 1

Sporulation 1 1 1

RPN11 SPT3

Anatomical structure morphogenesis 1 1

Cell differentiation 0 1

Sporulation resulting in formation of a cellular spore 0 1

Developmental process 1 1

Sporulation 0 1

Network with genes colored based on their expression and terms on alphabetical order:

functionalNetwork(t(termsGenes), plotType="bipartite", keepAllNodes=TRUE,

legendPrefix="", plotTitle="Genes - Terms network", plotTitleSub="",

geneExpr=genesYeastExpr, plotExpression="Fill")

Network with genes colored by alphabetical order (from red to pink), terms white:

functionalNetwork(termsGenes, plotType="bipartite", keepAllNodes=TRUE,

legendPrefix="", plotTitle="Genes - Terms network", plotTitleSub="")

5 Filtering and selecting clusters

As an example of analysis of a network with very overlapping clusters, we will use the
yeast gene list analyzed with DAVID:

incidMat <- fea2incidMat(feaResults_David)

functionalNetwork(incidMat)

FGNet 23

incidMatTerms <- fea2incidMat(feaResults_David, key="Terms")

functionalNetwork(incidMatTerms$clustersMatrix, plotOutput="dynamic",

weighted=TRUE, eColor="grey")

functionalNetwork(incidMatTerms$clustersMatrix, plotType="bipartite",

plotTitle="Terms in several clusters")

FGNet 24

5.1 Filtering based on a cluster property

The clusters to plot can be selected/filtered based on any property that is available in the
clusters matrix:

colnames(feaResults_David$clusters)

[1] "Cluster" "nGenes"

[3] "ClusterEnrichmentScore" "Genes"

[5] "Terms" "keyWordsTerm"

i.e. Selecting the clusters with highest Enrichment Score or least genes (setting eColor=NA,
plots the networks without edges):

par(mfrow=c(1,2))

Highest enrichment score

filterProp <- as.numeric(as.character(feaResults_David$

clusters$ClusterEnrichmentScore))

quantile(filterProp, c(0.10, 0.25, 0.5, 0.75, 0.9))

10% 25% 50% 75% 90%

0.08585003 0.33812100 5.90148600 7.65222050 7.85874500

incidMatFiltered <- fea2incidMat(feaResults_David,

filterAttribute="ClusterEnrichmentScore",

filterOperator="<", filterThreshold=7.65)

functionalNetwork(incidMatFiltered, eColor=NA,

plotTitle="Highest enrichment score")

Lowest genes

quantile(as.numeric(as.character(feaResults_David$clusters$nGenes)),

c(0.10, 0.25, 0.5, 0.75, 0.9))

10% 25% 50% 75% 90%

5.0 13.5 44.0 55.0 58.0

incidMatFiltered <- fea2incidMat(feaResults_David,

filterAttribute="nGenes", filterOperator=">", filterThreshold=20)

functionalNetwork(incidMatFiltered, plotTitle="Smallest clusters")

To use any property that is not available in the $clusters data frame, just add it as
column to the dataframe.

FGNet 25

5.2 Selecting clusters with specific keywords

keywordsTerm(getTerms(feaResults_David), nChar=100)

Cluster 1 Cluster 2

"Cellular protein catabolic process" "Metabolic process"

Cluster 3 Cluster 4

"Transcription" "Cellular protein catabolic process"

Cluster 5 Cluster 6

"Organelle" "MRNA processing"

Cluster 7 Cluster 8

"Transcription" "Regulation of biosynthetic process"

Cluster 9 Cluster 10

"Anatomical structure development" "Hydrolase activity"

Cluster 11

"ATP binding"

keywords <- c("hydrolase")

selectedClusters <- sapply(getTerms(feaResults_David),

function(x)

any(grep(paste("(", paste(keywords, collapse="|") ,")",sep=""), tolower(x))))

getTerms(feaResults_David)[selectedClusters]

tmpFea <- feaResults_David

tmpFea$clusters <- cbind(tmpFea$clusters, keywords=selectedClusters)

incidMatSelection <- fea2incidMat(tmpFea,

filterAttribute="keywords", filterOperator="!=",filterThreshold="TRUE")

functionalNetwork(incidMatSelection, plotType="bipartite")

FGNet 26

5.3 Selecting specific clusters

clustersDistance() allows to explore the overlap between clusters:

distMat <- clustersDistance(incidMat)

Clusters 4, 1 and 2 seem to be completely overlapping (distance 0). While cluster 11 does
not have any intersection with clusters 8 and 9. Let’s see:

selectedClusters <- rep(FALSE, nrow(feaResults_David$clusters))

selectedClusters[c(8,9,11)] <- TRUE

tmpFea <- feaResults_David

tmpFea$clusters <- cbind(tmpFea$clusters, select=selectedClusters)

incidMatSelection <- fea2incidMat(tmpFea,

filterAttribute="select", filterOperator="!=",filterThreshold="TRUE")

functionalNetwork(incidMatSelection, eColor=NA)

5.4 Filtering based on a gene-term set property

In some ocasions, it might also be useful to filter out gene-term sets within a cluster.
i.e. The terms in the top of the GO ontologies are annotated to many genes and make
most clusters overalp.
To filter out terms, (1) filter or select the terms in the the feaReults$geneTermSets data
frame, (2) save it as text file, and (3) import it with readGeneTermSets()

In this case, we will use DAVID’s example, and keep the terms thar are annotated to less
than 100 genes in yeast:

FGNet 27

Same analysis, setting overlap to 6:

feaResults_David_ov6 <- fea_david(names(genesYeast), geneLabels=genesYeast,

email="example@email.com",

argsWS=c(overlap=6, initialSeed=3, finalSeed=3, linkage=0.5, kappa=50))

Filter/select

sum(feaResults_David_ov6$geneTermSets$Pop.Hits < 100)

[1] 64

gtSets <- feaResults_David_ov6$geneTermSets[

feaResults_David_ov6$geneTermSets$Pop.Hits < 100,]

Save

write.table(gtSets, file="david_filteredGtsets.txt", sep="\t",

col.names = TRUE, quote=FALSE)

Load with "readGeneTermSets"

feaResults_filteredGtsets <- readGeneTermSets("david_filteredGtsets.txt",

tool="DAVID")

...

functionalNetwork(fea2incidMat(feaResults_filteredGtsets))

To explore the distribution of genes-terms in a specific organism:

FGNet 28

Yeast

library(org.Sc.sgd.db)

goGenesCountSc <- table(sapply(as.list(org.Sc.sgdGO2ORF), length))

barplot(goGenesCountSc, main="Number of genes annotated to GO term (Sc) ",

xlab="Number of genes", ylab="Number of GO terms")

Human

library(org.Hs.eg.db)

goGenesCountHs <- table(sapply(as.list(org.Hs.egGO2EG), length))

barplot(goGenesCountHs, main="Number of genes annotated to GO term (Human)",

xlab="Number of genes", ylab="Number of GO terms")

FGNet 29

6 Other auxiliary functions

6.1 analyzeNetwork()

analyzeNetwork() can be used to explore the structure of the network. It also returns
statistics about the nodes betweenness within each cluster, etc. . .
The example with GeneTerm Linker (Alzheimer):

incidMatFiltered <- fea2incidMat(feaAlzheimer,

filterAttribute="Silhouette Width", filterOperator="<", filterThreshold=0.2)

stats <- analyzeNetwork(incidMatFiltered)

FGNet 30

names(stats)

[1] "degree" "betweeness" "transitivity"

[4] "betweenessMatrix" "hubsList" "intraHubsCount"

stats$transitivity

commonClustersNw commonGtSetsNw

0.6947699 0.5943638

$degree and $betweenness are the values used for the plots. They contain the values
for each of the nodes in the global network (commonClusters) and within each clus-
ter/metagroup (subsets of commonGtSets network). The degree is given as percentage,
normalized based on the total number of nodes of the network. i.e. a value of 90 in a
network of 10 nodes, would mean the actual degree of the node is 9: it is connected to 9
nodes (90% of 10)).
The betweenness of each node in each cluster as matrix:

head(stats$betweennessMatrix)

Inter-modular hubs: Nodes with betweenness within the top 75% in the global network

stats$hubsList$Global

[1] "NLGN4X" "HCN1" "CHRM1" "CNTNAP1" "SCN2A"

Intra-modular hubs: Nodes with betweenness within the top 75% in each cluster
sub-network

stats$hubsList$"9"

[1] "MAPT" "CALM3" "APOE"

FGNet 31

DAVID’s example:

incidMat_metab <- fea2incidMat(feaResults_David)

analyzeNetwork(incidMat_metab)

Note the structure of the network varies not only depending on the dataset, but also
on the tool. Since tools like DAVID link all the nodes/terms within each cluster, their
internal normalized degree is always 100%.

FGNet 32

6.2 plotGoAncestors()

plotGoAncestors() and plotKegg() also allow to explore the significant gene term sets:

goIds <- getTerms(feaResults_David, returnValue="GO")[[7]]

plotGoAncestors(goIds, ontology="MF", nCharTerm=40)

FGNet 33

6.3 plotKegg()

keggIds <- getTerms(feaAlzheimer, returnValue="KEGG")[[3]]

plotKegg("hsa05010", geneExpr=genesAlzExpr, geneIDtype="GENENAME")

Saved as .png in current directory

FGNet 34

Acknowledgements

This work was supported by Instituto de Salud Carlos III [Research Projects PS09/00843
and PI12/00624] and by a grant from the Junta de Castilla y Leon and the European
Social Fund to S.A and C.D.

References

[1] Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large
gene lists using DAVID Bioinformatics Resources. Nature Protoc. 2009;4(1):44-57.

[2] Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths
toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res.
2009;37(1):1-13.

[3] Fontanillo C, Nogales-Cadenas R, Pascual-Montano A, De Las Rivas J (2011) Func-
tional Analysis beyond Enrichment: Non-Redundant Reciprocal Linkage of Genes and
Biological Terms. PLoS ONE 6(9): e24289. doi:10.1371/journal.pone.0024289

[4] Alexa A, and Rahnenfuhrer J (2010) topGO: Enrichment analysis for Gene Ontology.
R package version 2.16.0. URL: http://www.bioconductor.org/packages/release/
bioc/html/topGO.html

[5] Luo W, Friedman MS, Shedden K, Hankenson KD, Woolf PJ (2009) GAGE: generally
applicable gene set enrichment for pathway analysis. BMC Bioinformatics. 10:161.
URL: http://www.bioconductor.org/packages/release/bioc/html/gage.html

http://www.bioconductor.org/packages/release/bioc/html/topGO.html
http://www.bioconductor.org/packages/release/bioc/html/topGO.html
http://www.bioconductor.org/packages/release/bioc/html/gage.html

	Introduction to FGNet
	Installation
	Creating a network from a list of genes/proteins
	Graphical User Interface (GUI)
	In R code…
	Functional Enrichment Analysis (FEA)
	HTML report
	Individual networks

	Editing and creating new networks
	Incidence matrices
	Functional network
	Bipartite and intersection network
	Terms networks
	Genes - Terms networks

	Filtering and selecting clusters
	Filtering based on a cluster property
	Selecting clusters with specific keywords
	Selecting specific clusters
	Filtering based on a gene-term set property

	Other auxiliary functions
	analyzeNetwork()
	plotGoAncestors()
	plotKegg()

