Lecture 1: Introduction

Matt McQueen | Associate Professor

Department of Integrative Physiology
Institute for Behavioral Genetics
Institute of Behavioral Science
University of Colorado Boulder

Department of Epidemiology (secondary)
Colorado School of Public Health
University of Colorado
Personal Introduction

• Biostatistics (post-doctoral fellowship)
 – Harvard School of Public Health
• Epidemiology (doctoral)
 – Harvard School of Public Health
• Public Health (master’s)
 – University of Washington School of Public Health
• Neuroscience (bachelor’s)
 – University of Colorado Boulder
What I do

• “Big Data Epidemiology”
• Risk Factors
 – Molecular and genetic factors
 – Traditional epidemiological factors
• Health and behavioral outcomes
 – Behavioral and Psychiatric outcomes
 – Cardio-metabolic outcomes (obesity)
Course Overview – Day 1

• Lecture 1: Introduction
 – Tutorial 1: Getting Started

• Lecture 2: Quality Control Procedures
 – Tutorial 2: Data Cleaning and Genetic Ancestry
Course Overview – Day 2

• Lecture 3: Genome-Wide Association Approaches
 – Tutorial 3: Genome-Wide Association Analysis

• Lecture 4: Aggregation of GWAS Data
 – Tutorial 4: Heritability and Polygenic Scores
Course Overview – Day 3

• Lecture 5: Family-Based Approaches
 – Tutorial 5: Family-Based Association Testing

• Lecture 6: Meta-Analysis
 – Tutorial 6: Conducting a meta-analysis
Course Objectives

• Have a working knowledge of the steps necessary to carry out a genome-wide analysis
• Appreciate the inherent limitations to genome-wide analysis
• Gain hands-on experience working with genome-wide data
Background
Measurable Genetic Variation

- DNA
 - Frequencies of alleles at base-pair locations
- Gene Expression
 - Amount of gene product being expressed
- Epigenetics
 - Methylation patterns, etc.
DNA Variation

- DNA
 - Adenine (A)
 - Guanine (G)
 - Cytosine (C)
 - Thymine (T)

- DNA double helix
 - A pairs with T and G pairs with C

- Codons
 - Triplets of bases
 - 64 possible codons
 - 20 amino acids
Mutations: A Source of DNA Variation

• Point
 – Substitute one base for another

• Deletions
 – Base removed entirely

• Insertions
 – Base inserted

• Duplications
 – Base and/or sequence duplicated
Point Mutations:

A Source of Single Nucleotide Polymorphisms

- Base pair substitution
 - (e.g. replication error)
- Synonymous
 - *No change* in amino acid
- Nonsynonymous
 - Amino acid change
- Transitions
 - Between A and G or C and T
 - Change within same base (purines and pyrimidines)
- Transversions
 - All others
 - Change between bases
Population Genetics

• Infinite Sites Model
 – Each mutation creates a unique polymorphic site
 – Mutation rate $\sim 10^{-6}$
Life After Mutation

• Mutation is neutral
 – Random Genetic Drift
 • Eventually, the allele will “drift” out

• Mutation is harmful
 – Selective Pressure
 • Allele may quickly disappear

• Mutation is beneficial
 – Selective Pressure
 • Allele frequency may increase rapidly
Beneficial Mutation

- Lactase Persistence (~7500 years)
Beneficial Mutation

- Thriving at Altitude (~3000 years)
Common Ancestry

Sequences

Time
Common Ancestry

Sequences

Time
Common Ancestry

MRCA
Ancestry and Genetic Variation

• All DNA sequences are derived from others
 – Every sample has a genealogy
• Eventually, all lineages coalesce
 – Most Recent Common Ancestor (MRCA)
• Mutations may become polymorphisms
Measuring the Genome
Rapid pace of technology

• Advantages
 – Unprecedented look into biological systems
 – Efficiency is up
 – Cost is down

• Disadvantages
 – Technology is driving the bus
 – We do things because we can
 – We often have no idea what we’re looking for
Measuring the Genome

Molecular Precision

Family Data

Microsatellite Markers

Single Polymorphism

Traditional Heritability

Traditional Linkage

Genome-Wide Association
Traditional Heritability

• Objective
 – “Does it run in families?”

• Design
 – Family, twin and adoption studies

• Molecular data
 – None

• Desired outcome
 – Gives us a clue that genetics might be important
Traditional Linkage

• Objective
 – Find **genomic loci** linked to disease

• Design
 – Family-based

• Molecular information
 – 300 - 600 markers (often short tandem repeats)

• Desired outcome
 – Find genetic variation linked to disease
Genome-Wide Association

• Objective
 – Find **common alleles** associated with disease

• Design
 – Cohort, case-control, family-based

• Molecular information
 – 500,000 – 2.5M single nucleotide polymorphisms

• Desired outcome
 – Find genetic variation associated with disease
Why Genome-Wide Association?

• Molecular precision
 – Measure the genome on a more refined scale
• More powerful to detect common alleles
 – Common disease, common variant
• A result of the human genome project effort
Approaches to Genetic Research

• Genome-Wide
 – Linkage Analysis
 – Genome-Wide Association Analysis
 – Whole Genome Sequence Analysis

• Targeted
 – Candidate Gene(s) Association Analysis
Gene Hunters

• By definition, “integrative”
 – Combines epidemiological, sociological, statistical, clinical, genetic and molecular approaches

• The Goal...
 – FIND GENES INVOLVED WITH DISEASE
Why Hunt for Genes?
Why Hunt for Genes?

• Disease etiology

• Refined diagnosis and/or prognosis

• Drug development

• Disease prediction
Gene-Mapping

• Monogenic ‘Mendelian’ Diseases
 – Rare disease
 – Rare variants
 • Highly penetrant

• Complex Disease
 – Rare/Common disease
 – Rare/Common variants
 • Variable penetrance
Gene-Mapping

• Monogenic ‘Mendelian’ Diseases
 – Rare disease
 – Rare variants
 • Highly penetrant

• Complex Disease
 – Rare/Common disease
 – Rare/Common variants
 • Variable penetrance

Linkage!
Gene-Mapping

- Monogenic ‘Mendelian’ Diseases
 - Rare disease
 - Rare variants
 - Highly penetrant

- Complex Disease
 - Rare/Common disease
 - Rare/Common variants
 - Variable penetrance

Association
Disease and DNA Variation

Penetrance: \(P(D \mid G) \)

2012 Nature Reviews | Genetics
“Where in the genome...?”

• 1980s - 2005
 – Linkage (LOD Scores, etc.)

• 2006 -
 – Association
Why Now?
The “-omics” Age

c. 2000
 – Pre-genomic era
 – 100’s of Markers
 • STRs
 – Genome-wide linkage

c. 2016
 – Post-genomic era
 – 1M+ markers
 • SNPs
 – Genome-wide association
 Genetic Information

• Human Genome Project
 – One human genome (3B base pairs)

• HapMap Project
 – 100s of human genomes (millions of base pairs)

• ENCODE Project
 – 100s of human genomes (functional data)

• 1000 Genomes Project
 – 1000s of human genomes (12M base pairs)

• Large-Scale Whole Genome Sequencing
 – 1000s of human genomes (3B base pairs)
Next up...

• Tutorial 1
 – Getting started